首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新疆北部阿尔泰山东段发育大量的岩浆岩,对取自阿德尔石英闪长斑岩和乔拉克萨依花岗闪长岩的样品进行了LA-ICP-MS锆石U-Pb同位素年龄测定,获得了(415.7±4.0) Ma和(413.5±3.0) Ma的年龄值。据此将其形成时代厘定为早泥盆世。两组样品主量元素差异明显,稀土、微量元素特征基本一致。石英闪长斑岩具有中钾-低钾钙碱性、过铝质花岗岩岩石特征,而花岗闪长岩具有高钾钙碱性、准铝质系列特征。两者轻稀土富集、重稀土相对亏损,中等-弱负Eu异常;微量元素Rb、Th、U等LILE富集,具有明显的“峰”,Nb、Ta、Ti等HFSE强烈亏损,呈明显“TNT”负异常,显示了与俯冲作用有关的岩浆岩特征。综合区域地质资料分析,阿尔泰造山带东段泥盆纪早期岩浆活动剧烈,成因复杂,侵位方式多样,形成了多种火成岩构造组合,可能是热幔-热壳结构下的产物,具有形成超大型矿床的潜力。  相似文献   

2.
先锋北山金矿区内侵入脉岩为花岗闪长斑岩和石英闪长玢岩。花岗闪长斑岩具有高硅、富碱、富钙和贫镁等特征;轻稀土元素(LREE)相对富集,重稀土元素(HREE)相对亏损,无明显铕异常;富集大离子亲石元素(LILE)Rb、Th、K,亏损高场强元素(HFSE)Nb、Ta、P、Ti等,地球化学特征显示其属于过铝质钙碱性I型花岗岩。矿区石英闪长玢岩具有富碱、富镁和贫磷等特征,轻稀土元素(LREE)相对富集,重稀土元素(HREE)相对亏损,无铕异常;富集大离子亲石元素(LILE)Rb、Th,K等,亏损高场强元素(HFSE)Nb、Ta、P、Ti等。地球化学特征显示其属于准铝质高钾钙碱性岩石。花岗闪长斑岩及石英闪长玢岩的La--ICP--MS U--Pb同位素测年结果分别为128.3±2.6 Ma和113.2±1.7 Ma,为早白垩世。结合完达山地区地质资料,认为先锋北山花岗闪长斑岩和石英闪长玢岩是古太平洋板块构造体制由挤压变为伸展背景下的产物。  相似文献   

3.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

4.
The overwhelming majority of porphyry Mo-Au-Cu deposits in the Urals are related to the low-K quartz diorite minor intrusions of the island-arc type, which were formed from Silurian Middle-Late Carboniferous. In the South Urals, the Cu/Mo ratio of ore decreases eastward along with enrichment in Re. At the same time, molybdenite is depleted in this metal in compliance with more sialic crust and potassium content in ore-bearing dioritic rocks. Quartz diorites at the highest-Re deposits contain 1–2 wt % K2O. At most Early-Middle Devonian deposits and occurrences of the western Tagil-Magnitogorsk-West Mugodzhary femic megazone, molybdenite is sporadic. The Re content in rocks was mainly determined using the kinetic method and to a lesser extent with ICP-MS. A Cameca SX-100 microprobe was also used for study of molybdenite. The Cu/Mo ratio of ore exceeds 600; the Mo content is commonly 1–15 ppm (occasionally up to 30 ppm and higher); the Re content is up to 0.01–0.04 ppm, sporadically increasing to 0.08–0.17 ppm. At the same time, the Re content in molybdenite often reaches 0.2–0.4 wt %. The highest Re concentration was established in the ore of the largest Mikheevsky deposit formed in the Late Devonian-Early Carboniferous and localized in the easternmost part of the East Ural sialic-femic megazone. The Re content in the orebodies of this deposit often reaches 0.2–0.5 ppm (up to 1.4–2.7 ppm) and 0.21 wt % in molybdenite. The average Mo grade of ore is 80 ppm and Cu/Mo ratio is 66. These data and Sr isotopic composition of ore-bearing granitoid and metasomatic rocks [(87Sr/86Sr)t = 0.7038–0.7051; (?Nd)t = 3–7] testify to the mantle source of matter with insignificant admixture of crustal material. The same is apparently valid for Re and Cu in contrast to Mo. This statement is corroborated by the inverse correlation between Cu/Mo and Mo/Re ratios in the ore. Fluid-crystal fractionation of ore-bearing dioritic rocks is accompanied by enrichment of ore in Mo and by decrease in Re content in molybdenite. In the Tarutino ore field, the pyrite-chalcopyrite mineralization gives way to the molybdenite mineralization in line with in-sequence intrusion of diorite with quartz-bearing groundmass and granodiorite porphyry. Because of increasing silica content in granitoids, the Re concentration in molybdenite commonly remains below 0.07 wt % as is noted at the rare deposits localized in the sialic megazones.  相似文献   

5.
Fe and Cu skarn deposits constitute the most important skarn type worldwide, whereas the controlling factors that lead to the difference in metal associations remain not well known. The Fe- and Cu-hosting Tieshan complex in the Edong district provides a good opportunity for comparative study on the genetic differences between Fe and Cu skarn deposits. In this study, integrated studies of geochronology, geochemistry and Sr-Nd-Hf isotope compositions were conducted on the complex. LA-ICP-MS zircon U-Pb dating results show that the Tieshan complex was emplaced in the time interval of 135 ± 3 to 144 ± 1 Ma. Multiphase rocks from the complex can be broadly subdivided into two suites. The Fe-Cu-related suite, which consists of diopside diorite, quartz diorite, quartz diorite porphyrite and porphyritic granodiorite, possesses low SiO2 (53.5–67.1 wt.%), K2O (2.44–3.53 wt.%) and Rb (45−83 ppm) contents, but high Sr (1132−2684 ppm), Ba (1073−1656 ppm) contents and negligible Eu anomalies, with very high Sr/Y (>90) ratios, similar to typical high Ba-Sr granitoids. The rock suite has initial 87Sr/86Sr values of 0.70648 to 0.70737, εNd(t) values of −12.3 to −8.2 and εHf(t) values of −16 to −7, comparable to values of the Early Cretaceous mafic rocks in the Edong district and adjacent areas, indicating that it might be largely derived from an enriched lithospheric mantle source, along with minor involvement of lower-crustal components. By contrast, the Fe-related suite, which is composed of quartz diorite, quartz diorite porphyrite and granodiorite porphyry, is characterized by relatively high SiO2 (63.0–71.0 wt.%) and K2O contents (3.36–5.53 wt.%), and a wide range of Sr (158−1135 ppm), Ba (762−1366 ppm) contents and Sr/Y (11–99) ratios. In combination with the presence of abundant inherited zircon grains, the lower εNd(t) (−12.4 to −9.3) and εHf(t) (−25 to −15) values indicate a greater degree of lower-crustal contribution for the Fe-related suite. In addition, the calculated zircon Ce (Ce/Ce* and Ce4+/Ce3+) and Eu (Eu/Eu*) anomalies suggest that the Fe-Cu-related suite has much higher oxygen fugacity (fO2) than the Fe-related suite. This study highlights fO2 and fractionation degree of magma as useful indicators for differentiating Fe and Cu skarn mineralization.  相似文献   

6.
《International Geology Review》2012,54(13):1755-1771
The tectonic setting of the West Qinling orogenic belt (QOB) during the Middle–Late Triassic remains a subject of debate. Petrogenesis of adakitic granodiorite plays a critical role in determining the nature of the lower continental crust and mantle dynamics during orogenic processes in the region. The Tadong adakitic granodiorite pluton in the western part of the West QOB is an important element of this system. Its petrogenesis can place severe constraints on the nature of the lower continental crust and mantle dynamics during the formation of the orogenic belt. U–Pb dates obtained through zircon laser-ablation inductively coupled mass spectrometry indicate that the Tadong pluton was emplaced at 220.2 ± 2.5 Ma, coeval with abundant magmatic rocks in the region. This indicates a prominent magmatic event in the western part of West Qinling during the Late Triassic. Geochemically the granodiorites are metaluminous to peraluminous high-K calc-alkalic and characterized by relatively high SiO2 (63.84–67.91 wt.%), Al2O3 (15.39–16.54 wt.%), and Sr (435.08–521.64 ppm), and low MgO (1.16–1.88 wt.%; Mg# = 38–46), Y (5.49–8.84 ppm) and Yb (0.34–0.91 ppm) contents, variable Eu anomalies (Eu/Eu* = 0.87–1.1), and high Sr/Y (51.72–84.45) ratios. These are compositional features of adakites that are commonly assumed to have been produced through partial melting of subducted oceanic basalt. In addition, the adakitic rocks are relatively enriched in light rare earth elements, large ion lithophile elements (Rb, Ba, Sr, Th, and K), and depleted in high field strength elements. However, petrological, geochronological, and geochemical characteristics indicate that the adakitic rocks were most likely formed by partial melting of a thickened mafic lower crust. Therefore, we suggest that the Tadong adakitic granodiorites were produced in a syn-collisional regime and associated with asthenospheric upwelling triggered by slab break-off or gravitational instability. This mechanism was responsible for generating the Late Triassic magmatism of West Qinling.  相似文献   

7.
High-Mg andesitic rocks (HMAs) are commonly generated through slab-mantle interactions in arc settings. In this study, however, we report the high-Mg diorites in the Zibo and Laiwu areas of the eastern North China Craton (NCC), which were particularly produced during lithospheric thinning within an intracontinental setting. Some of the rocks generated large-scale Fe skarn deposits (e.g., the Zibo quartz monzonite and the Laiwu Kuangshan monzonite), whereas the others are ore-barren (e.g., the Zibo gabbroic diorite and the Laiwu Jinniushan and Jiaoyu monzodiorites), providing an excellent case to reveal how the non-arc HMAs were formed and the crucial factors controlling the Fe mineralization. All the rocks are characterized by high Mg# values (51–84) at andesitic compositions (52.5–65.0 wt%) and show arc-like geochemistry (e.g., enriched in LREEs and LILEs and depleted in HREEs and HFSEs), of which the strongly mineralized intrusions are more felsic with higher Mg# values (69–84) and stronger fractionation between LREEs and HREEs. Zircon U-Pb dating indicates that these rocks were emplaced at the early Cretaceous (130–132 Ma), coeval with the peak thinning of the lithosphere in the eastern NCC. All the rocks have transitional Sr-Nd-Pb isotopic compositions (0.704726 < (87Sr/86Sr)i < 0.707507, −16.0 < εNd(t) < −5.4, 16.334 < (206Pb/204Pb)i < 17.629, 15.205 < (207Pb/204Pb)i < 15.447, 36.306 < (208Pb/204Pb)i < 37.754) between the local lithospheric mantle and the ancient crust. Combined with their high Mg# and arc-like geochemistry, they were most likely derived from an anciently metasomatized and recently hydrated subcontinental lithospheric mantle (SCLM) with various crustal contamination. Magma mixing modelling suggests that in the Zibo area little crustal materials were involved into the gabbroic diorite, but ~20% middle-upper crustal materials were assimilated into the monzodiorite and quartz monzonite during magma ascent. In the Laiwu area, lower crustal materials (at least ~30%) were significantly involved into the Jinniushan, Jiaoyu and Kuangshan intrusions through magma mixing at the base of the lower crust. Sedimentary rocks (mainly carbonates interbedded with coal-bearing shales, sandstones and evaporitic rocks) were particularly assimilated into the strongly mineralized intrusions in both the Zibo and Laiwu areas. Such assimilation probably contributed to promote fluid exsolution and metal extraction from the melts, since the strongly mineralized intrusions have the lowest H2O contents (2.4–3.2 wt% H2O), the highest Mg# values and the lowest oxygen fugacities (2.5 < ∆FMQ < 3.1). It is thus considered that the assimilation of sedimentary rocks is crucial for generating ore-forming fluids. P-T calculations indicate that all the high-Mg diorites were emplaced shallowly (mainly T < 760 °C and P < 140 MPa). In combination with the co-development of bimodal volcanics, metamorphic core complexes and rift basins in the eastern NCC during the early Cretaceous, extreme lithospheric extension should have occurred in the study region. Such intracontinental extension was likely caused by the asthenospheric upwelling induced by the stagnant Paleo-Pacific Plate in the transition zone beneath the eastern Asian continent. The geodynamic regime is different from those of the typical arc settings.  相似文献   

8.
为探讨兴蒙造山带南蒙古陆块南缘晚古生代的构造演化,对出露于西乌旗南部石英闪长岩、花岗闪长岩和黑云母花岗岩开展了详细的年代学、岩石地球化学及Hf同位素特征研究.结果表明:石英闪长岩、花岗闪长岩和黑云母花岗岩分别形成于330±2 Ma、274±1 Ma及271±1 Ma~282±1 Ma.石英闪长岩属高镁闪长岩/安山岩类 (HMA),与俯冲洋壳板片上部地幔楔中地幔橄榄岩的熔融作用有关,而花岗闪长岩及黑云母花岗岩的源区可能与新生地壳的部分熔融有关.结合区域成果,推测西乌旗南部晚古生代侵入岩均形成于古亚洲洋向北侧南蒙古陆块持续俯冲的阶段,早石炭世石英闪长岩属活动大陆边缘弧岩浆活动,早二叠世花岗闪长岩和黑云母花岗岩则是俯冲过程中短暂弧后伸展阶段的产物.   相似文献   

9.
在扬子地块西缘出露有大量的新元古代岩浆岩,这些岩石对于重建罗迪尼亚超大陆有着重要的意义。本文对云南峨山岩体的花岗闪长岩和似斑状黑云母二长花岗岩开展了详细的岩石学、岩石地球化学和年代学研究,结果表明,似斑状黑云母二长花岗岩侵位于826.6±2.5 Ma,而花岗闪长岩有着较年轻的结晶年龄818.3±2.8 Ma,花岗闪长岩比似斑状黑云母二长花岗岩有着更低的SiO2含量,但是更高的Al2O3、MgO、Fe2O3、TiO2和P2O5含量。在稀土元素配分曲线和微量元素蛛网图上,两种岩性呈现出相似的特征,都是具有右倾的稀土元素配分样式,呈现出Eu负异常,相对于大离子亲石元素(LILEs)更亏损高场强元素(HFSEs)。似斑状黑云母二长花岗岩富集Nd同位素组分,而花岗闪长岩与之有着相似的Nd同位素值。地球化学数据显示可能的岩石学成因是变质火成岩源区在826 Ma时发生部分熔融形成了峨山似斑状黑云母二长花岗岩并且残留下来了一个麻粒岩化的源区;麻粒岩源区在818 Ma时再次发生部分熔融形成了具有A型属性的峨山花岗闪长岩。结合前人的数据和本文的研究,认为扬子西缘在新元古代时期是一个活动大陆边缘,而华南地块当时在罗迪尼亚的位置更可能是在边缘而不是中心。  相似文献   

10.
The Khoynarood area is located in the northwest of Iran, lying at the northwestern end of the Urumieh–Dokhtar volcano-plutonic belt and being part of the Qaradagh–South Armenia domain. The main intrusive rocks outcropped in the area have compositions ranging from monzonite–quartz monzonite, through granodiorite, to diorite–hornblende diorite, accompanied by several dikes of diorite–quartz diorite and hornblende diorite compositions, which were geochemically studied in order to provide further data and evidence for the geodynamic setting of the region. The SiO2, Al2O3 and MgO contents of these rocks are about 58.32–68.12%, 14.13–18.65% and 0.68–4.27%, respectively. They are characterized by the K2O/Na2O ratio of 0.26–0.58, Fe2O3 + MnO + MgO + TiO2 content about 4.27–13.13%, low Y (8–17 ppm) and HREE (e.g., 1–2 ppm Yb) and high Sr contents (750–1330 ppm), as well as high ratios of Ba/La (13.51–50.96), (La/Yb)N (7–22), Sr/Y (57.56–166.25), Rb/La (1.13–2.96) and La/Yb (10–33.63), which may testify to the adakitic nature of these intrusions. Their chemical composition corresponds to high-silica adakites, displaying enrichments of LREEs and LILEs and preferential depletion of HFSEs, (e.g., Ti, Ta and Nb). The REE differentiation pattern and the low HREE and Y contents might be resulted from the presence of garnet and amphibole in the solid residue of the source rock, while the high Sr content and the negative anomalies of Ti, Ta and Nb may indicate the absence of plagioclase and presence of Fe and Ti oxides in it. As a general scenario, it may be concluded that the adakitic rocks in the Khoynarood were most likely resulted from detachment of the subducting Neo-Tethyan eclogitic slab after subduction cessation between Arabian and Central Iranian plates during the upper Cretaceous–early Cenozoic and partial melting of the detached slab, followed by interactions with metasomatized mantle wedge peridotite and contamination with continental crust.  相似文献   

11.
尹滔  李威  尹显科  张伟  袁华云  裴亚伦 《中国地质》2019,46(5):1105-1115
对拉萨地块北部阿翁错地区花岗闪长岩进行了年龄分析、岩石地球化学研究。锆石LA-ICP-MS定年测得花岗闪长岩U-Pb年龄为(114.4±1.9) Ma,属于早白垩世晚期岩浆活动的产物。花岗闪长岩地球化学特征表明,其具有典型镁安山岩/闪长岩(MA)的地球化学特征,所有样品均具有较高Mg~#值(45.42~54.29),低的TFeO~*/MgO值(1.58~2.26);所有样品都显示轻稀土元素富集,富集大离子亲石元素,亏损高场强元素的特征。研究表明,阿翁错花岗闪长岩是班公湖—怒江洋壳在俯冲消减背景下,由俯冲洋壳脱水熔融产生的溶体与地幔橄榄岩发生交代作用的产物,为晚中生代班公湖—怒江洋盆的南向俯冲消减提供了直接的岩石学、地球化学、年代学证据。  相似文献   

12.
A complex of gabbro (with metamorphic pyroxenite xenoliths)–gabbroic diorite–granodiorite was recently discovered in Tongxunlian, Xilinhot city, Inner Mongolia. Zircon U–Pb isotopic dating showed that the gabbro and the granodiorite were formed ca. 319 ± 1 Ma and ca. 318 ± 1 Ma respectively, indicating that emplacement of the composite rocks occurred in the late Carboniferous. Positive εHf(t) values of +12.0 to +14.1 and two‐stage model ages (TDM2) of 418 to 537 Ma of these rocks are similar to the age of formation of metamorphic pyroxenite (560 Ma, based on Sm–Nd isochron dating) and suggest that the rocks were derived from depleted lithospheric mantle (metamorphic pyroxenite). Our findings revealed that all of these calc‐alkaline and metaluminous intrusive rocks formed from the fractional crystallization of comagmatic evolution in an island‐arc setting. Moreover, the gabbro–gabbroic diorite in the study region was characterized by a low TiO2 content, a slight deficit of Nb, a surplus of Ta, and relatively low LREE/HREE ratios. Along with a relatively high Zr/Y ratio (4.0 to 5.6), these characteristics indicate that the rocks may have been formed by melting of the mantle wedge via metasomatism. Combination with other features of the rocks indicates a two‐episode tectonic model: we conclude that first, the fluid and Si‐rich melt metasomatism caused partial melting of the enriched lithospheric mantle, and these influences were then stored in the mantle; and second, slab breakoff resulted in upwelling of the upper mantle's soft fluid (stratum), which melted the enriched mantle of the lithosphere and formed the basaltic magma of the gabbro–gabbroic diorite. This study provides new geological evidence to support the Neoproterozoic subduction between the Paleo‐Asian Ocean plate and the Xilinhot microcontinent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

Large porphyry Cu-Au deposits are associated with Early Miocene intrusive rocks in Tethyan belt, discovered along Chagai magmatic arc in Western Pakistan, adjacent to Southeast Iran. Two types of rocks were discriminated as granodiorite and monzodiorite from Saindak area. The granodiorites are associated with regional large Cu-Au mineralization, while the monzodiorites are mostly ore-barren. LA-ICP-MS U-Pb dating yielded weighted mean 206Pb/238U ages of 22.16–24.2 Ma for granodiorites and ca. 22.6 Ma for a monzodiorite. These intrusive rocks in the Saindak area are all calc-alkaline rocks, with enriched LILEs and depleted HFSEs, and without Eu negative anomalies. The felsic granodiorites are characterized by high Sr contents and Sr/Y ratios, with intermediate to high (La/Yb)N ratios that identify them as typical high-silica adakites. In contrast, the basaltic-andesitic monzodiorites are just normal arc-related rocks, showing less fractionated REE patterns than the granodiorites, with systematically lower LREE and higher MREE and HREE. Low K2O/Na2O ratios and decoupled Sr/Y-(La/Yb)N ratios indicate the characteristics of slab-derived adakites for the granodiorites, most likely originated through partial melting of the subducted Neotethys oceanic crust beneath Eurasian continent followed by subsequent mantle interaction. The almost simultaneously melting of subcontinental lithospheric mantle induced by dehydration of Neotethys plate gave rise to the formation of the barren monzodiorites. These intrusive rocks in the Saindak area are characterized by similar Sr-Nd-Pb isotopes with high 87Sr/86Sri ratios, slightly negative εNd(t) values and radiogenic Pb isotopes, plotting in the field between the MORB and EM-II mantle endmembers or the Average Cadomian Lower Crust, suggesting subducting sediments or old continental crustal materials have contributed into the compositions of these rocks by source enrichment or crustal contamination. The slab-melting derived adakite is favourable for regional massive Cu-Au mineralization in the Saindak area.  相似文献   

14.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   

15.
田健  滕学建  刘洋  滕飞  郭硕  何鹏  王文龙 《中国地质》2020,47(3):767-781
内蒙古狼山山脉西侧分布有大面积的晚古生代岩浆岩,其时代集中在早石炭世—晚二叠世,不同时代岩浆岩岩石组合对于认识狼山地区晚古生代构造背景具有重要的意义。文章通过岩石学、岩相学、地球化学及Hf同位素等方法,对狼山地区查干乃呼都格一带花岗闪长岩体进行了研究。该岩体岩性为花岗闪长岩,LA-ICP-MS锆石U-Pb年龄显示,其206Pb/238U加权平均年龄为(299±1)~(293±2) Ma。岩石暗色矿物为角闪石及黑云母,富含闪长质包体,P_2O_5含量与SiO_2含量之间显示良好的负相关性,富钠(Na_2O含量为3.45%~4.96%),高钠钾比值(Na_2O/K_2O比值为1.33~2.52),岩石地球化学特征显示花岗岩成因类型为Ⅰ型花岗岩。岩石具有负的ε_(Hf)(t)值(-6.3~-2.0)及T_(DM2)为1437~1704 Ma(平均值为1606 Ma),显示了古—中元古代古老地壳熔融的特点,ε_(Hf)(t)-t及角闪石成因图解显示源区有幔源岩浆参与。花岗岩富集大离子亲石元素Rb、K、Pb,不同程度的亏损高场强元素Nb、Ta、P、Ti,轻稀土富集,重稀土亏损,弱的负Eu异常,显示了岩浆弧的地球化学特征。结合晚石炭世—早二叠世狼山地区侵入岩岩石组合为闪长岩+石英闪长岩+花岗闪长岩(英云闪长岩),早—中二叠世大石寨组火山岩岩石组合为玄武岩+玄武安山岩+安山岩+英安岩,总体反映了陆缘弧的岩石组合;狼山地区早二叠世处于大陆边缘弧的构造背景,与华北地块北缘中东部可以对比。  相似文献   

16.
The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt.The Shaquanzi Formation comprises mainly basalt,andesite/andesitic tuff,rhyolite and sub-volcanic diabase with local diorite intrusions.The volcanic rocks and diorites contain ca.315-305 Ma and ca.298 Ma zircons respectively.These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements(LILEs),light rare-earth elements(LREEs),and depletion in high field strength elements(HFSEs)in primitive mantle normalized multi-element diagrams,which resemble typical back-arc basin rocks.They show depleted mantle signature with ε_(Nd)(t)ranging from+3.1 to +5.6 for basalt;+2.1 to+4.7 for andesite;-0.2 to+1.5 for rhyolite and the ε_(Hf)(t)ranges from-0.1 to +13.0 for andesites;+5.8 to +10.7 for andesitic tuffs.We suggest that the Shaquanzi Formation basalt might have originated from a depleted,metasomatized lithospheric mantle source mixed with minor(3-5%)subduction-derived materials,whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma.The Shaquanzi Formation volcanic rocks could have formed in an intracontinental back-arc basin setting,probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif.The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian,marked by the emplacement of dioritic magma in the Shaquanzi belt.  相似文献   

17.
The Nabar pluton with the age of Oligo-Miocene located northwest of Isfahan, the Urumieh-Dokhtar magmatic belt, is composed of gabbro, gabbro diorite, diorite, quartz diorite, tonalite, and quartz monzonite. These rocks contain plagioclase, quartz, alkali-feldspar, magnesiohornblende, actinolite, tremolite-hornblende, actinolite-hornblende, anthophyllite, biotite, and Na-poor pyroxene. Application of the Al-in-hornblende barometry indicates pressures of 2–2.15 kbar, whereas the clinopyroxene barometry shows a pressure of 5 kbar. The temperature (i.e., 750–800°C) is estimated using the amphibole-clinopyroxene thermometry in a dioritic sample. Magmatic water content was greater than 10% at the time of formation of dioritic rocks in the Nabar pluton. Based on chemistry of mafic minerals and geochemical data, the Nabar plutonic complex comprises medium-K, calc-alkaline, and I-type granitoid. The rocks are characterized by enrichment of lithophile elements (LILEs) and depletion of high-field-strength elements (HFSEs). The Nabar rocks have weak concave-upward rare earth element (REE) patterns, suggesting that amphibole played a significant role in their generation during magma segregation. Low (Al2O3/(FeO + MgO + TiO2) and (Na2O + K2O)/(FeO + MgO + TiO2) ratios, and the patterns of trace and rare earth elements suggest that these rocks formed along a destructive plate margin and were derived from a lower crustal source. The magma probably formed by partial melting of lower crustal protoliths (amphibolites). Lower crust contamination with magma derived from partial melting of the upper mantle has an important role in the formation of this intrusive body, and a fractional crystallization of melts in higher crustal levels generated this spectrum of rock types. Mantle-derived gabbroic magmas emplaced into the lower crust are the most likely heat sources for partial melting.  相似文献   

18.
Hercynian gabbroic, dioritic and tonalitic rocks crop out in the neighbourhood of Rovale (Sila Grande, Calabria). They make up a crude rectangular outcrop with the western part consisting of gabbroic rocks and the eastern of dioritic and tonalitic rocks. They come into contact with medium to high grade metapelites on the western side and with heterogeneous granodiorites on the other sides. In the gabbroic body both opx ± ol bearing cumulates and amphibole differentiates occur and are characterized by the widespread presence of brown pargasite. Sporadic magmatic to subsolidus corona textures between olivine and plagioclase or orthopyroxene and plagioclase can be observed and their preservation clearly suggests a post-tectonic emplacement for the gabbroic magma. Diorites and tonalites display hypidiomorphic textures free of olivine and orthopyroxene and bearing green Mg-hornblende. The granitoids, on the basis of chemical data, display orogenic features of the continent-continent collision type. The gabbroic rocks have high Al tholeiitic composition and fractionation of orthopyroxene and plagioclase played an important part in their evolution. The Rb/Sr isochron method did not give a precise emplacement age for the granitoids as a whole. Initial 87Sr/86Sr ratios (at 290 Ma) are higher in the gabbroic body (0.7091–0.7095) than in diorites and tonalites (0.7083–0.7092). Thus gabbroic rocks appear more displaced than diorites and tonalites towards crustal isotopic composition. The eNd data seem to confirm this feature, thus suggesting that the gabbroic rocks and diorites derived from distinct mantle magma batches. Interestingly, small isotropic gabbroic masses occur within the diorites and show general features that allow them to be considered as possibly parental with respect to the host diorites. The evolution to the dioritic composition might have occurred through fractionation and minor mixing with a more acidic component such as the northern granodiorites. Geochemical, Sr and Nd isotopic data indicate a scenario of a composite plutonic body formed by distinct magma batches of mixed crust and mantle origin.  相似文献   

19.
Two types of spatially and temporally associated Jurassic granitic rocks, I-type and A-type, occur as pluton pairs in several locations in southern Hunan Province, South China. This paper aims to investigate the genetic relationships and tectonic mechanisms of the co-development of distinct granitic rocks through petrological, geochemical and geochronological studies. Zircon LA-ICPMS dating results yielded concordant U–Pb ages ranging from 180 to 148 Ma for the Baoshan and Tongshanling I-type granodiorites, and from 180 to 158 Ma for the counterpart Huangshaping and Tuling A-type granites. Petrologically, the I-type granodiorites consist of mafic minerals such as hornblende whereas the A-type granites are dominated by felsic minerals (e.g., quartz, K-feldspar and plagioclase). Major and trace element analyses indicate that the I-type granodiorites have relatively low SiO2 (64.5–71.0%) and relatively high TiO2 (0.28–0.51%), Al2O3 (13.8–15.5%), total FeO (2.3–4.7%), MgO (1.3–2.6%) and P2O5 (0.10–0.23%) contents, and the A-type granites are characterized by high concentrations of Rb (212–1499?ppm), Th (18.3–52.6?ppm), U (11.8–33.6?ppm), Ga (20.0–36.6?ppm), Y (27.1–134.0?ppm) and HREE (20.3–70.0?ppm), with pronounced negative Eu anomalies (Eu/Eu*?=?0.01–0.15). Moreover, the I-type granodiorites are classified as collision-related granites emplaced under a compressional environment, whereas the A-type granites are within-plate granites generated in an extensional setting. Zircon Hf isotopic compositions vary substantially for these granitic rocks. The I-type granodiorites are characterized by relatively young Hf model ages (TDM1?=?1065–1302 Ma, TDMC =1589–2061 Ma) and moderately negative εHf(t) values (–5.9 to –11.5), whereas the A-type granites have very old model ages (TDM1?=?1454–2215 Ma, TDMC?=?2211–2974 Ma) and pronounced negative εHf(t) values (–15.8 to –28.3). These petrochemical and isotopic characteristics indicate that the I-type granodiorites may have been derived from a deep source involving mantle-derived juvenile (basaltic) and crustal (pelitic) components, whereas the A-type granites may have been sourced from melting of meta-greywacke in the crust. This study proposes that the pressure and temperature differences in the source regions caused by combined effects of intra-plate mantle upwelling and plate subduction are the major controlling factors of the co-development of the two different types of magmas. Crustal anatexis related to lithospheric delamination and upwelling of hot asthenosphere under a high pressure and temperature environment led to the formation of the I-type magmas. On the other hand, the A-type magmas were formed from melting of the shallower part of the crust, where extensional stress was dominant and mantle-crust interaction was relatively weak. Rifts and faults caused by mantle upwelling developed from surface to depth and successively became channels for the ascending I- and A-type magmas, resulting in the emplacement of magmas in adjacent areas from sources at different depths.  相似文献   

20.
The Aqishan-Yamansu belt in the Eastern Tianshan (NW China) contains many intermediate to felsic intrusive rocks and spatially and temporally associated Fe (-Cu) deposits. Zircon U-Pb dating of the Bailingshan granitoids, including diorite enclaves (in granodiorite), diorite, monzogranite and granodiorite, and andesitic tuff from the Shuanglong Fe-Cu deposit area yielded ages of 329.3 ± 2.1 Ma, 323.4 ± 2.6 Ma, 313.0 ± 2.0 Ma, 307.5 ± 1.7 Ma and 318.0 ± 2.0 Ma, respectively. These new ages, in combination with published data can be used to subdivide magmatism of the Bailingshan intrusive complex into three phases at ca. 329–323 Ma, ca. 318–313 Ma and ca. 308–297 Ma. Of the analyzed rocks of this study, the Shuanglong diorite enclave, diorite and andesitic tuff show calc-alkaline affinities, exhibiting LILE enrichment and HFSE depletion, with negative Nb and Ta anomalies. They have high MgO contents and Mg# values, with depleted εHf(t) and positive εNd(t) values, similar crustal-derived Nb/Ta and Y/Nb ratios, low Th/Yb and Th/Nb, and high Ba/La ratios, which are consistent with them being sourced from a depleted mantle wedge metasomatized by slab-derived fluids and crustal contamination. However, the monzogranite and granodiorite are metaluminous with characteristics of low- to high-K calc-alkaline I-type granites. The granitic rocks are enriched in LILE, depleted in HFSE and have significant Eu anomalies, with high Y contents and low Sr/Y ratios, resembling typical of normal arc magmas. Depleted εHf(t) and positive εNd(t) values with corresponding young TDMC ages of zircons, as well as Nb/Ta, Y/Nb, Th/U and La/Yb ratios suggest that the granitic rocks were probably formed by re-melting of juvenile lower crust or pre-existing mantle-derived mafic–intermediate igneous rocks. Integrating published data, we conclude that the Bailingshan granitoids (excluding the Shuanglong diorite and diorite enclave) were derived from re-melting of juvenile lower crust and mantle-derived mafic–intermediate igneous rocks, with mantle components playing a more prominent role in the formation of the younger and more felsic rocks. A comprehensive review, including our new data, suggests that the Aqishan-Yamansu belt formed as a fore-arc basin during the Carboniferous (ca. 350–300 Ma) when the Kangguer oceanic slab subducted beneath the Yili-Central Tianshan block. The ongoing southward subduction of the slab resulted in the closure of the Aqishan-Yamansu fore-arc basin (ca. 320–300 Ma), due to slab steepening and rollback followed by slab breakoff and rebound. During the Aqishan-Yamansu fore-arc basin inversion, the main phase of the Bailingshan granitoids emplaced in the Aqishan-Yamansu belt, accompanied by contemporary Fe and Fe-Cu mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号