首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs. However, the location of carbon storage in Earth’s interior and the reasons for carbon enrichment remain unclear. In this study, we report CO2-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area, Hainan Province, which may shed some light on the carbon enrichment process in the lithospheric mantle. We also present ...  相似文献   

2.
Fluid inclusions in mantle xenoliths   总被引:23,自引:0,他引:23  
Fluid inclusions in olivine and pyroxene in mantle-derived ultramafic xenoliths in volcanic rocks contain abundant CO2-rich fluid inclusions, as well as inclusions of silicate glass, solidified metal sulphide melt and carbonates. Such inclusions represent accidentally trapped samples of fluid- and melt phases present in the upper mantle, and are as such of unique importance for the understanding of mineral–fluid–melt interaction processes in the mantle. Minor volatile species in CO2-rich fluid inclusions include N2, CO, SO2, H2O and noble gases. In some xenoliths sampled from hydrated mantle-wedges above active subduction zones, water may actually be a dominant fluid species. The distribution of minor volatile species in inclusion fluids can provide information on the oxidation state of the upper mantle, on mantle degassing processes and on recycling of subducted material to the mantle. Melt inclusions in ultramafic xenoliths give information on silicate–sulphide–carbonatite immiscibility relationships within the upper mantle. Recent melt-inclusion studies have indicated that highly silicic melts can coexist with mantle peridotite mineral assemblages. Although trapping-pressures up to 1.4 GPa can be derived from fluid inclusion data, few CO2-rich fluid inclusions preserve a density representing their initial trapping in the upper mantle, because of leakage or stretching during transport to the surface. However, the distribution of fluid density in populations of modified inclusions may preserve information on volcanic plumbing systems not easily available from their host minerals. As fluid and melt inclusions are integral parts of the phase assemblages of their host xenoliths, and thus of the upper mantle itself, the authors of this review strongly recommend that their study is included in any research project relating to mantle xenoliths.  相似文献   

3.
There are many melt and fluid inclusions (mainly CO2-rich) in olivine and pyroxene phenocrysts in basalts from the Ross Island area. The melt inclusions can be classified as follows: (1) crystalline melt inclusions (type I), (2) fluid-melt inclusions (type II) and (3) glass inclusions (type III). The daughter minerals in type I include olivine, plagioclase, ilmenite, etc. Fluid-melt inclusions are a new type which represent the immiscibility of magma and fluid at a particular stage of evolution. Three types of fluid-melt inclusions were examined in this study: a) crystal + liquid + gas, b) inclusions coexisting with glass inclusions and fluid inclusions, and c) crystal + daughter mineral (dissolved salt) + gas. Both primary and secondary melt inclusions are recognizable in the samples. The secondary melt inclusions were formed during healing of fractures in the host minerals in the process of magma rise. The homogenization temperatures (both Leitz 1350 stage and quench method were used) of melt inclusions in basalts range from 1190 to 135°C at high pressure (about 7 kbars), indicating that the basalts may have come from the upper mantle. Melt-fluid immiscibility in basaltic magma shows that the CO2-rich fluids may be the main fluid phase in the upper mantle, which are of significance in understanding the evolution of magma and various processes in the deep levels of the earth. The homogenization temperatures of melt and aqueous fluid inclusions in granites and metamorphic rocks in this area vary from 980 to 1100°C and 279 to 350°C, respectively.  相似文献   

4.
针对松辽盆地南部的双辽火山群中碱性玄武岩及包含其中的地幔捕掳体的普通薄片鉴定、岩石地球化学分析、流体包裹体显微岩相学和激光拉曼光谱分析,研究表明:双辽火山岩以碱性橄榄玄武岩为主,玄武岩中的地幔捕掳体比较发育;对玄武岩斑晶以及地幔捕掳体中的流体-熔融包裹体测试显示玄武岩中的橄榄石斑晶和地幔捕掳体中的流体-熔融包裹体十分发育,其成分主要是CO2,此外还含有少量的CO,CH4,N2和H2O,与上地幔中的自由流体相组分一致。松辽盆地南部的CO2气藏主要是幔源-岩浆成因,成藏时间较晚,主要在新生代,与双辽火山活动的时间接近。尽管双辽火山活动规模较小,但是具有很强的释出CO2的能力,这些富含CO2和H2O的碱性玄武质岩浆很可能并未喷出地表,而是沿着深大断裂进入盆地内部,从而成为松南无机CO2气藏气源体之一。  相似文献   

5.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

6.
Volcanic rocks in seamounts of the South China Sea consist mainly of alkali basalt, tholeiitic basalt, trachyandesitic pumice, dacite, etc. Inclusions in the minerals of the volcanic rocks are mainly amorphous melt inclusions, which reflects that the volcanic rocks are characterized by submarine eruption and rapid cooling on the seafloor. Furthermore, fluid-melt inclusions have been discovered for the first time in alkali basalts and mantle-derived xenoliths. indicating a process of differentiation between magma and fluid in the course of mantle partial melting. Alkali basalts and inclusions may have been formed in this nonhomogeneous system. Rock-forming temperatures of four seamounts were estimated as follows: the Zhongnan seamount alkali basalt 1155 ∼ 1185 °C; the Xianbei seamount alkali basalt 960 ∼ 1200 °C; tholeiitic basalt 1040 ∼ 1230 °C; the Daimao seamount tholeiitic basalt 1245 ∼ 1280 °C; and the Jianfeng seamount trachyandestic pumice 880 ∼ 1140 °C. Equilibrium pressures of alkali basalts in the Zhongnan and Xianbei seamounts are 13.57 and 8.8 × 108 Pa, respectively. Pyroxene equilibrium temperatures of mantle xenoliths from the Xianbei seamount were estimated at 1073 ∼ 1121 °C, and pressures at (15.58 ∼ 22.47)×108Pa, suggesting a deep-source (e.g. the asthenosphere) for the alkali basalts. This project was financially supported by the National Natural Science Foundation of China and Guangzhou Marine Geology Survey.  相似文献   

7.
Green clinopyroxenes with elevated Fe and Na contents coexist with “normal” clinopyroxene phenocrysts in alkali basalts from the Nógrád-Gömör Volcanic Field (NGVF) of northern Hungary and southern Slovakia. The coexistence of these clinopyroxenes with incompatible compositions in the same sample is often used as evidence for mixing between a mafic and a more evolved melt. However, results of fluid-inclusion, textural, and geochemical studies of samples from Tertiary basanites from the NGVF suggest that the majority of the green clinopyroxenes could not have formed from magma mixing but, rather, are products of lithospheric processes such as metasomatism or dynamic melt flow.

Two distinct types of green clinopyroxenes have been identified. Group 1 green clinopyroxenes are Al rich and contain CO2 inclusions; Group 2 green clinopyroxenes are Al poor and lack CO2 inclusions. On the basis of analysis of CO2 inclusions, the Group 1 clinopyroxenes, observed as xenocrysts and major constituents of clinopyroxenite xenoliths, were entrained into the host basanitic magmas in the uppermost mantle. These clinopyroxenes originally formed during a meta-somatic event or as a result of dynamic melt flow in the mantle. Group 2 clinopyroxenes likely represent xenocrysts from disaggregated dioritic cumulates produced from melt(s) related to the host basanitic magmas.  相似文献   

8.
The timing of mantle−derived CO2 charging in sedimentary basins is the basis for studying CO2-sandstone interactions and CO2-oil interactions. In general, the time of the volcanic eruption near the CO2 gas reservoir is considered to be the time of mantle-derived CO2 charging. However, this approach is not suitable for hydrocarbon-bearing basins that have experienced multiple volcanic events. In this paper, using dawsonite-bearing sandstones contained in an oil-bearing CO2 gas and oil reservoir in the southern Songliao Basin as the object of the study on the basis of paragenetic sequence and fluid inclusions, we establish a mineral dating method for determining the time of mantle-derived CO2 charging. In this method, the mineral used for dating is dawsonite, which is formed under a high CO2 partial pressure and records the migration and aggregation of mantle-derived CO2 in geologic history. By interpreting the dawsonite-bearing sandstone in the southern Songliao Basin, we find two hydrocarbon charges and one CO2 charge and that the mantle-derived CO2 charging occurred slightly later than or quasi-simultaneously with the second hydrocarbon filling. Combining the currently known time of hydrocarbon reservoir formation and the time of tectonic fracture development, we deduce that the mantle-derived CO2 formed the dawsonite in the southern Songliao Basin at the end of the Cretaceous (end of the Mingshui period) and the beginning of the Paleogene.  相似文献   

9.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

10.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

11.
《International Geology Review》2012,54(14):1792-1812
Abundant crude oil and CO2 gas coexist in the fourth member of the Upper Cretaceous Quantou reservoir in the Huazijing Step of the southern Songliao Basin, China. Here, we present results of a petrographic characterization of this reservoir based on polarizing microscope, X-ray diffraction, fluid inclusion, and carbon–oxygen isotopic data. These data were used to identify whether CO2 might be trapped in minerals after the termination of a CO2-enhanced oil recovery (EOR) project, and to determine what effects might the presence of CO2 have on the properties of crude oil in the reservoir. The crude oil reservoir in the study area, which coexists with mantle-derived CO2, is hosted by dawsonite-bearing lithic arkoses and feldspathic litharenites. These sediments are characterized by a paragenetic sequence of clay, quartz overgrowth, first-generation calcite, dawsonite, second-generation calcite, and ankerite. The dawsonite analysed during this study exhibits δ13 C (Peedee Belemnite, PDB) values of ?4.97‰ to 0.67‰, which is indicative for the formation of magmatic–mantle CO2. The paragenesis and compositions of fluid inclusions in the dawsonite-bearing sandstones record a sequence of two separate filling events, the first involving crude oil and the second involving magmatic–mantle CO2. The presence of prolate primary hydrocarbon inclusions within the dawsonite indicates that these minerals precipitated from oil-bearing pore fluids at temperatures of 94–97°C, in turn suggesting that CO2 could be stored as carbonate minerals after the termination of a CO2-EOR project. In addition, the crude oil in the basin would become less dense after deposition of bitumen by deasphalting the injection of CO2 gas into the oil pool.  相似文献   

12.
Fluid inclusions, ranging from pure N2 to pure CO2, occur in olivine porphyroclasts in spinel dunite xenoliths (chrome-diopside suite) from two localities within the Quaternary to Historic alkaline lavas of Lanzarote, Canary Islands. This is the first report of fluid inclusions containing major amounts of N2 in mantle xenoliths. The nitrogen-rich fluid inclusions predate at least one generation of nitrogen-free carbon dioxide inclusions; textural evidence indicates that the inclusions were trapped within the upper mantle. Some of the nitrogen-rich fluid inclusions are intimately associated with solid inclusions of spinel. The nitrogen-rich fluid was most likely produced in-situ, by oxidation-dehydration reactions destabilizing ammonium-bearing silicate minerals (phlogopite, amphibole), increasing oxygen fugacity or, possibly, increasing temperature of the mantle. This process could be related to an event of CO2 and silicate melt injection at 6–8 kbar (Neumann et al., in press), or to some earlier event in the evolution of the mantle beneath Lanzarote. The existence of a N2-rich fluid phase in at least some mantle lithology(ies) at certain conditions is demonstrated by these data. This discovery has consequences for the understanding of the evolution of the mantle below the Canary Islands, as well as for the global nitrogen budget.  相似文献   

13.
Magmatism-related localized deformation in the mantle: a case study   总被引:2,自引:0,他引:2  
A deformed composite peridotite-pyroxenite xenolith in Pliocene alkali basalts from the Pannonian Basin (Szentbékkálla, Bakony—Balaton Highland Volcanic Field) has been studied in detail. A narrow shear zone of intense deformation marked by porphyroclast elongation and recrystallization runs along the peridotite-pyroxenite contact. The xenolith contains a large volume of euhedral olivine neoblasts and tablet grains of olivine away from the shear zone interpreted as products of annealing and recrystallization in the presence of grain boundary fluid. Estimates of the time required for growth of recrystallized olivine grains suggest that the annealing took place in situ in the mantle and not during transport of the xenolith in the basalt magma. The grain boundary fluid present during recrystallization was a vapor rich silicate-melt different from the host basaltic melt that entrained the xenolith. This study demonstrates that high-stress deformation zones and associated fluid-assisted recrystallization, which are common features in kimberlite mantle xenoliths, also occur in some mantle xenoliths from alkali basalts. The suggested high-stress deformation zones in the mantle beneath the Pannonian Basin may be produced by paleoseismic events in the lithosphere associated with faulting related to the ascent of basalt magma.Editorial responsibility: J. Hoefs
Csaba SzabóEmail: Phone: +36-1-2090555Fax: +36-1-3812108
  相似文献   

14.
The 1986 lethal eruption of Lake Nyos (Cameroon) was caused by a sudden inversion between deep, CO2-loaded bottom lake waters and denser, gas-free surface waters. A deep CO2 source has been found in fluid inclusions which occur predominantly in clinopyroxenes from lherzolitic mantle xenoliths, brought to the surface by the last erupted alkali basalts. P–T conditions of CO2 trapping correspond to a gas density equal (or higher) than that of liquid water. It is suggested that this dense CO2, found in many ultrabasic mantle xenoliths worldwide, has accumulated at km depth, below a column of descending lake water. It may remain in a stable state for a long period, as long as the temperature is above the density inversion temperature for pure H2O/CO2 systems. At an estimated depth of about 3 km, cooling by descending waters (to about 30 °C) induces a density inversion for the upper part of the CO2 reservoir. This causes a constant, regular upstream of low-density CO2 which, in its turn, feeds the shallower lake density inversion.  相似文献   

15.
A large body of recent work has linked the origin of Si-Al-rich alkaline glass inclusions to metasomatic processes in the upper mantle. This study examines one possible origin for these glass inclusions, i.e., the dissolution of orthopyroxene in Si-poor alkaline (basanitic) melt. Equilibrium dissolution experiments between 0.4 and 2 GPa show that secondary glass compositions are only slightly Si enriched and are alkali poor relative to natural glass inclusions. However, disequilibrium experiments designed to examine dissolution of orthopyroxene by a basanitic melt under anhydrous, hydrous and CO2-bearing conditions show complex reaction zones consisting of olivine, ± clinopyroxene and Si-rich alkaline glass similar in composition to that seen in mantle xenoliths. Dissolution rates are rapid and dependent on volatile content. Experiments using an anhydrous solvent show time dependent dissolution rates that are related to variable diffusion rates caused by the saturation of clinopyroxene in experiments longer than 10 minutes. The reaction zone glass shows a close compositional correspondence with natural Si-rich alkaline glass in mantle-derived xenoliths. The most Si-and alkali-rich melts are restricted to pressures of 1 GPa and below under anhydrous and CO2-bearing conditions. At 2 GPa glass in hydrous experiments is still Si-␣and alkali-rich whereas glass in the anhydrous and CO2-bearing experiments is only slightly enriched in SiO2 and alkalis compared with the original solvent. In the low pressure region, anhydrous and hydrous solvent melts yield glass of similar composition whereas the glass from CO2-bearing experiments is less SiO2 rich. The mechanism of dissolution of orthopyroxene is complex involving rapid incongruent breakdown of the orthopyroxene, combined with olivine saturation in the reaction zone forming up to 60% olivine. Inward diffusion of CaO causes clinopyroxene saturation and uphill diffusion of Na and K give the glasses their strongly alkaline characteristics. Addition of Na and K also causes minor SiO2 enrichment of the reaction glass by increasing the phase volume of olivine. Olivine and clinopyroxene are transiently stable phases within the reaction zone. Clinopyroxene is precipitated from the reaction zone melt near the orthopyroxene crystal and redissolved in the outer part of the reaction zone. Olivine defines the thickness of the reaction zone and is progressively dissolved in the solvent as the orthopyroxene continues to dissolve. Although there are compelling reasons for supporting the hypothesis that Si-rich alkaline melts are produced in the mantle by orthopyroxene – melt reaction in the mantle, there are several complications particularly regarding quenching in of disequilibrium reaction zone compositions and the mobility of highly polymerized melts in the upper mantle. It is considered likely that formation of veins and pools of Si-rich alkaline glass by orthopyroxene – melt reaction is a common process during the ascent of xenoliths. However, reaction in situ within the mantle will lead to equilibration and therefore secondary melts will be only moderately siliceous and alkali poor. Received: 24 August 1998 / Accepted: 2 December 1998  相似文献   

16.
Vulture volcano displays a wide range of mafic to alkaline, carbonate-, and/or CaO-rich volcanic rocks, with subvolcanic and plutonic rocks together with mantle xenoliths in pyroclastic ejecta. The roles of magmatic volatiles such as CO2, S, and Cl have been determined from compositions and trapping temperatures of inclusions in phenocrysts, which include the Na-K-Ca-carbonate nyerereite within melilite. We surmise that this alkali carbonate crystallised from an appropriate carbonatitic melt at relatively high temperature. Carbonatitic metasomatic features are traceable throughout many of the mantle xenoliths, and various carbonatitic components are found in the late stage extrusive suite. There is no evidence that alkali carbonatite developed as a separate magma, but it may have been an important evolutionary stage. We compare the rare occurrence of nyerereite at Vulture with other carbonatites and with an unaltered kimberlite from the Udachnaya pipe. We review the evidence at Vulture for associated carbonatitic metasomatism in the mantle, and we suggest that low viscosity alkali carbonatitic melts may have a primary and much deeper origin than previously considered.  相似文献   

17.
Volcanic activity started about 20 Ma before present with quartz tholeiites (QTh), had a climax with alkali olivine basalts (AOB) 13 to 14 Ma ago and ended 7 Ma ago with nepheline basanites (NB) and olivine nephelinites (ON). AOB covers 73% of the volcanic area. About 250 basalts and peridotite xenoliths were sampled for investigation. An upper mantle layer ranging from about 90 to 60 km depth has been conditioned for a preferential alkali basalt production by advection of H2O-CO2-fluids containing Si, Al, Ca, K, Na, P as major constituents beside numerous incompatible minor elements. At the onset of the geodynamically triggered mantle conditioning locally restricted diapirism into shallow depth has caused formation of olivine tholeiite magmas (OTh) at about 1,300° C by partial melting. All of these OTh primary melts intruded due to a favourable compressibility into granulites of the lower crust. The rare QTh basalts are their derivative magmas which have been slightly contaminated in the crust. Magmas of the subsequent alkali basaltic volcanism (AOB, bAOB, NB, ON, MON) formed by in-situ partial melting at about 75 to 90 km depth after depression of the peridotite solidi by fluids to temperatures 1,200° C. Except many AOB these magmas are primary melts as characterized by olivine/melt distribution coefficients of Mg/Fe2+ (K D=0.29 to 0.34), by Ni concentrations (260 to 330 ppm) and the occurrence of peridotite xenoliths. Rapid rise of gas charged melts due to saturation in CO2 prevented separation of olivine etc. and of xenoliths. The sequence of magmas from OTh to ON (or MON) is formed from decreasing proportions of orthopyroxene (opx) and increasing contributions of clinopyroxene (cpx) and phlogopite (ph) at almost equal proportions of spinel (sp). Incongruent melting of opx (and cpx) for OTh, AOB, NB and ON is correlated with precipitation of olivine. The average xenolith composition (73% ol, 18% opx, 7% cpx, 1.1% sp and 1.3/0.5% ph) was used to model the sources of the investigated melts by 9 incompatible elements and to calculate degrees of partial melting. The occurrence of garnet cannot be reliably excluded by modelling on the basis of HREE distribution coefficients. The average xenolith composition was used for modelling because of its resemblance with worldwide sampled depleted mantle inclusions. For avoiding to exhaust at least one mineral of the model mantle in the support of the norm composition of OTh, AOB, NB and MON magmas the degrees of partial melting cannot exceed 12.5%, 6%, 6% and 4% respectively. Mantle containing about 500 ppm K (and the correlated incompatible elements), like the average of 36 xenoliths, allows to explain the formation of OTh magmas. AOB, NB and ON melts require peridotite with slightly less than 1,500 ppm K, 670 ppm P and proportions of the correlated elements LREE, Sr, Ba, Zr, Rb, Cs, Ta, Th, Hf, U, which are higher than their abundance in primitive mantle rocks. About 20% of the xenoliths have this composition. Metasomatism of fluids with these elements must have been an immediate precursor of the alkali basaltic volcanism. Otherwise the preservation of a local disequilibrium in 87Sr/86Sr ratios between cpx cores and total rock at upper mantle temperatures cannot be explained.  相似文献   

18.
吉林双辽七星山新生代玄武岩的特点及其成因探讨   总被引:8,自引:1,他引:8  
本文通过岩石学、稀有元素及同位素地球化学等方面的研究,确认吉林双辽七星山火山是在国内含超镁铁岩包体的火山中唯一喷发于早第三纪的钠质系列碱性玄武岩火山群。该火山群中部三座山所产富橄碧玄岩系幔源原生岩浆直接喷发于地表的产物,并携有大量超镁铁岩包体;东部和西部五座山中的碱性橄榄玄武岩和粒玄岩同样来源于上地幔,但曾经历过一定程度的结晶分异作用。文中根据本区的特点和新的参数,重新计算了原生岩浆的几个判别标准。  相似文献   

19.
对长岭凹陷深层天然气藏储层——营城组火山岩中发育的流体包裹体进行了详细研究,结果表明在火山岩发育的石英、方解石细网脉中均存在较多的碳质流体包裹体,单个包裹体激光拉曼光谱分析结果表明其主要为CO2及CH4两种类型的碳质包裹体。其中方解石细网脉体中发育有原生及次生CH4包裹体,而含CO2包裹体多以原生包裹体产于石英细网脉中。很多含CO2包裹体的石英细脉中发现了含CH4包裹体的方解石脉体的角砾,这就表明石英细脉形成晚于方解石细脉。营城组火山岩储层中CO2及CH4包裹体的产状特征研究表明,松辽盆地深层天然气藏的形成系火山岩成岩后CO2及CH4等气体不同期次充注的结果,CH4气的充注时间早于CO2气,火山岩中发育的原生孔隙及次生裂隙为上述气体的充注和聚集提供了重要通道。  相似文献   

20.
挥发分(例如H2O、CO2、F、Cl和S)是地幔的重要组成部分,虽然它们在地幔中的含量很低,但是在地幔熔融和熔体演化、地幔不均一、地幔流变学、地幔地震特性和电导率等研究方面具有重要作用。对矿物熔体包裹体和玻璃挥发分的研究已经成为当前的研究热点。其中,熔体包裹体研究凭借其独特的优势成为研究地幔和岩浆挥发分组成的重要手段。熔体包裹体直接捕获了矿物形成时岩浆中的成分,且由于寄主矿物的存在使得熔体包裹体能够保持独立演化而不受外界环境影响,因此能够较为完整地保存岩浆中的挥发分信息。同时,研究熔体包裹体中的挥发分是恢复岩浆喷发前挥发分含量最直接的途径。如果通过现代分析方法(如扫描电镜、电子探针和离子探针等)对熔体包裹体进行详细的岩相学观察以及对后期可能影响熔体包裹体原始挥发组分的作用(地壳混染、岩浆去气、扩散和水化作用)进行评估,并结合实验研究熔体包裹体被捕获后发生的变化而对数据进行矫正,那熔体包裹体对研究岩浆体系中的挥发分将大有可为。基于此,本文系统介绍了熔体包裹体挥发分研究的现状及主要研究内容,主要包括熔体包裹体挥发分的测试方法、挥发分在岩浆中的溶解度、判断挥发分数据可靠性和挥发分研究的经典应用等4个方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号