首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.  相似文献   

2.
《International Geology Review》2012,54(12):1307-1325
The problem of the physico-chemical mechanism of the evolution of geosynclinal areas can be approached only by joint efforts of geologists, geophysicists, and geochemists. The geophysicists should be guided by laws of the Earth's crust evolution, as established by the geologists. Statistical method should be introduced into geology. “Density inversion” is the main factor in the vertical movement within geosynclines. In V.V. Beloussov's definition, this means a situation wherein a heavier elastic layer is supported by a lighter and fluid one. The several effects of this phenomenon, of a geological interest, are considered. Investigations by Bott, Balavadze, and others have demonstrated the existence of density inversion. A new hypothesis of the vertical movement in geosynclines is presented. In the first half of a cycle, tensile stresses of the heat expansion of the Earth result in a deep rift along which the geosyncline subsides. This is followed by the flow of acid magma out of the mantle and upward, toward the base of the crust and the granite layer. As a result, mountains rise on the site of the earlier subsidence, in the second half of the cycle, with density inversion in control of regional and local movements. According to another hypothesis, the differentiation takes place at much greater depths and is independent of any crustal tension. —Auth. English summ.  相似文献   

3.
中国大地构造基本特征及其发展的初步探讨   总被引:5,自引:0,他引:5       下载免费PDF全文
大地构造是地壳形变的结果,而地壳形变是在地壳形成的基础上发展起来的。地壳的形成主要表现为地质体的建造过程,包括地壳形成的地质时期中,不同温度和压力下所产生的沉积岩、岩浆岩和变质岩的类型、组合和相带的发展。地壳的形变主要表现为地质体的改造过程,包括各种岩层在形成过程之中或以后,经受内力和外力作用而产生的各种微观和宏观的结构变化,如流动、褶曲、破碎和断裂等。  相似文献   

4.
地球系统多圈层构造观的基本内涵   总被引:2,自引:2,他引:0  
地球系统多圈层构造观的基本点是,把地球作为一个活的天体放在宇宙系统之中,更多地考虑地球深部壳-幔-核之间的相互作用,考虑地外天体对地球运动的作用和影响。这一构造观认为:构造运动并不仅仅是岩石圈板块之间的相互作用,而是地球系统的全球动力作用过程;陆与洋是对立统一相互转化的,单纯的大陆增生说是不正确的;地幔对流说至今未被证实,陆块是活动的,但不能大规模漂移;大陆地壳不是单纯地侧向或垂向增生,而是多旋回构造-岩浆作用叠合的产物;地球的构造不是均变式向前发展,而是非均变、非线性、旋回式向前演化的;地球表层在不同地史阶段,均有其受相应深断裂体系控制的不同的构造格局,大西洋-印度洋-太平洋式大洋盆体制,只是在中生代晚期以来才出现的。   相似文献   

5.
《Tectonophysics》1999,301(1-2):173-181
The deep and superdeep boreholes of the German Continental Deep Drilling Program (KTB) provide probably the most extensive data archive on in-situ properties of metamorphic crustal rock from a single site. Analysis of the variability of several geophysical parameters point out fractal features and a degree of correlation between data values comparable to 1/f-noise. Accordingly, the Earth's crust, at the KTB site, can be statistically described as an inhomogeneous medium whose properties are basically invariant from metre to kilometre scale. Piecewise homogeneous models appear to be inadequate to represent petrophysical properties, at least in the vertical dimension, and 1/f-noise offers a far more suitable concept to simulate heterogeneities in the Earth's crust.  相似文献   

6.
把克拉通、下地壳和大陆岩石圈这几个重要的地质名词放在一起做文章的标题,其实只是想强调一个事情,即陆壳形成和稳定化的结果是形成大陆岩石圈.大陆岩石圈是地球圈层的基本单元,是现代板块构造运动的核心构件和核心载体.忽视大陆岩石圈,要讨论地球上大陆与大洋、地壳与地幔、地球的深部圈层与外部圈层、内部圈层间相互作用以及物质与能量的...  相似文献   

7.
铀钍的地球化学及对地壳演化和生物进化的影响   总被引:10,自引:2,他引:8  
本文论述了在含挥发份和贫挥发份条件下U、Th的迁移行为及其对地球和行星演化的影响,并阐述了造成地球独特地质演化历史的原因。提出了U、Th在地球中的迁移模式以及该模式对地壳形成、演化的控制作用和对生物发展演化的可能影响。  相似文献   

8.
For the last two decades, Iceland and other oceanic plateaux have been considered as potential analogues for the formation of the early Earth's continental crust. This study examines the compositions of silicic rocks from modern oceanic plateaux, revealing their differences to Archaean continental rock types (trondhjemite–tonalite–granodiorite or TTG) and thereby emphasising the contrasted mechanisms and/or sources for their respective origins. In most oceanic plateaux, felsic magmas are thought to be formed by fractional crystallization of basalts. In Iceland, the interaction between mantle plume and the Mid‐Atlantic ridge results in an abnormally high geothermal gradient and melting of the hydrated metabasaltic crust. However, despite the current `Archaean‐like' high geothermal gradients, melting takes place at a shallow depth and is unable to reproduce the TTG trace element signature. Consequently, oceanic plateaux are not suitable environments for the genesis of the Archaean continental crust. However, their subduction could account for the episodic crustal growth which has occurred throughout the Earth's history.  相似文献   

9.
华北克拉通构造演化   总被引:11,自引:3,他引:8  
华北克拉通是中国大陆的主要构造单元,从早期到中生代以来的地质记录较完整,受到国际关注,是大陆形成和演化研究的天然实验室。华北克拉通的构造演化可以分为八个大的阶段:陆核形成阶段;陆壳巨量生长阶段;微陆块拼合与克拉通化;古元古代大氧化事件与地球环境剧变;古元古代活动带构造与高级麻粒岩相变质作用;中-新元古代多期裂谷与地球中年调整期;古生代边缘造山;中生代构造转折与去克拉通化。华北克拉通的大陆演化显示了地球的进化和不可逆过程,特别是热体制的演变。早期陆核的成因仍存在争议,但是陆壳由小到大、多阶段生长的过程是明确的。25亿年前后的克拉通化是最具显示度的地质事件,微陆块的拼合是大陆聚合和形成稳定克拉通的主要过程,已经被揭示。但是由绿岩带-高级区构成的穹隆-龙骨构造并不遵从板块构造的基本构造样式。经历了太古宙与元古宙分界时期的"静寂期"之后,华北克拉通记录了与全球休伦冰期以及大氧化事件相关的地质活动。古元古代活动带则记录了裂谷-俯冲-碰撞的过程,具有显生宙造山带的某些特征,伴有高级麻粒岩岩相的变质作用,暗示了早期板块构造的出现。从约18~8亿年长达十亿年或更长的时限里,华北克拉通一直处于伸展环境,发育多期裂谷,有多期陆内岩浆活动,是岩石圈结构和下地壳组成的关键调整期。从古生代起,华北的南、北缘都经历了现代板块构造意义的造山事件,显示了华北克拉通古陆通过古蒙古洋和古秦岭洋与相邻陆块之间的构造活动,分别称为兴蒙造山带和秦岭-大别造山带。中生代的华北克拉通出现构造体制的转折和地壳活化,表现为岩石圈减薄和大量壳熔花岗岩的出现。古太平洋板块的活动显然是重要因素之一,但周边其它陆块的作用也是重要的,克拉通破坏机制及其内涵的研究还有进一步深化的空间。华北克拉通的构造演化有其特点,也具有全球意义。   相似文献   

10.
华南地区地壳速度结构分析   总被引:18,自引:0,他引:18       下载免费PDF全文
笔者利用地球物理综合剖面上获取的P波速度值,对岩石圈地壳进行分层研究,划分出上、中、下地壳。按照大地构造单元进行数据的归类总结,计算出地壳各层平均速度和厚度值,以及地壳的平均速度和厚度值,最终通过所取得的数据资料的分析研究,探讨地球内部结构的动力学过程。  相似文献   

11.
The magnetic anomalies in the surroundings of the DEKORP 2-N profile — within a rectangle of 230 km N-S and 170 km E-W — are interpreted by a two-layer model where the shape of an interface between an upper nonmagnetic and a lower magnetized layer can be determined. The depth and the amplitudes of the vertical undulations of the interface may vary within certain intervals. Along the DEKORP profile in its Rhenohercynian portion this interface is adjusted to the seismic results by fitting the interface to a weakly reflecting band observed in the seismic section. Thereby the depth of the corresponding zone within the Earth's crust can be extrapolated from the profile line into the surrounding area.  相似文献   

12.
In spite of the abundance of definitions of central massifs, there is no integration of data Khain and Sheynmann (1960) define the central massifs as a residual province of older cycles within a progressive folding system. They note such provinces tend to be remodeled by the younger movements, yet retain their basic “setup” while exerting influence on the surrounding rocks. Central massifs may be classified into: 1) blocks of ancient Precambrian platforms, 2) blocks of Paleozoic or Mesozoic folded structures within younger geosynclinal system and 3) provinces of early consolidation which serve as “growth centers” within a geosynclinal system. Despite the differences in origin and age of central massifs, they have many common features. All are within geosynclinal belts and serve to divide them into segments; they are polygonal to diamond-shaped and are bounded by deep rifts with “flows” of ultrabasic to basic magma. As a rule, there are three periods of development of a massif with a single tectonic cycle: 1) continental regimen with denudation 2) minor marine trangression, block deformations, volcanism and granite intrusion and 3) transition to intermontane low with associated volcanic activity. Central massifs show,a mosaic of variously trending faults caused largely by vertical movements. Some students attribute the much thinner crust within the central massifs, based on geophysical studies, to a redistribution of deep-seated substance from the massif toward the geosyncline. — W. D. Lowry.  相似文献   

13.
Models of the volume of continental crust through Earth history vary significantly due to a range of assumptions and data sets; estimates for 3 Ga range from <10% to >120% of present day volume. We argue that continental area and thickness varied independently and increased at different rates and over different periods, in response to different tectonic processes, through Earth history. Crustal area increased steadily on a pre-plate tectonic Earth, prior to ca. 3 Ga. By 3 Ga the area of continental crust appears to have reached a dynamic equilibrium of around 40% of the Earth's surface, and this was maintained in the plate tectonic world throughout the last 3 billion years. New continental crust was relatively thin and mafic from ca. 4–3 Ga but started to increase substantially with the inferred onset of plate tectonics at ca. 3 Ga, which also led to the sustained development of Earth's bimodal hypsometry. Integration of thickness and area data suggests continental volume increased from 4.5 Ga to 1.8 Ga, and that it remained relatively constant through Earth's middle age (1.8–0.8 Ga). Since the Neoproterozoic, the estimated crustal thickness, and by implication the volume of the continental crust, appears to have decreased by as much as 15%. This decrease indicates that crust was destroyed more rapidly than it was generated. This is perhaps associated with the commencement of cold subduction, represented by low dT/dP metamorphic assemblages, resulting in higher rates of destruction of the continental crust through increased sediment subduction and subduction erosion.  相似文献   

14.
Abstract Aqueous fluid released in metamorphism is transported upwards from depth to the Earth's surface. I propose a hydrofracturing model for the fluid transport. In the model, fluid is transported by the upward propagation of a two-dimensional vertical fluid-filled crack from a fluid reservoir (e.g. overpressured compartment under a seal) at depth to the Earth's surface; fluid is injected consecutively from the reservoir into the crack at a given (but not necessarily constant) injection rate; some of the injected fluid is lost by infiltration from the crack walls into the surrounding permeable rock. An approximate solution of the crack propagation is obtained using fluid dynamics for turbulent film flow and linear elastic fracture mechanics. The solution shows the transition from a regime in which the excess pressure of the fluid in the reservoir drives the propagation to a regime in which the buoyancy of the fluid in the crack drives the propagation. For example, if the net injection rate of H2O is 1 m2/s, the regime transition occurs when the vertical crack length becomes 280 m; after the transition, the propagation velocity and average aperture are constant: 21 m/s and 4.8 cm. If the injection rate is lower than a critical value, hydrofracturing cannot be an effective mode for the fluid transport because of the significant fluid loss by infiltration from the crack walls into the surrounding permeable rock. Assuming a fluid-saturated crust with hydrostatic pore fluid pressure, a lower limit can be estimated for the injection rate required to transport H2O by hydrofracturing without significant fluid loss. For example, the lower limit for transport from a depth of 15 km to the Earth's surface is estimated at 0.2 m2/s if the crustal permeability is 10-17 m2. The lower limit decreases with decreasing crustal permeability.  相似文献   

15.
16.
俯冲作用是连接地表系统和地球深部系统的最为关键的地质过程,其对研究地球深部碳循环具有重要的意义。俯冲洋壳岩石圈中的碳主要存储在沉积物、蚀变洋壳玄武岩以及蛇纹岩中。俯冲变质作用过程含碳岩石的变质演化控制着其中含碳矿物相的转变及碳迁移过程。本文选取了蚀变洋壳玄武岩进行相平衡模拟,来研究其含碳矿物相的变质演化过程。计算结果表明,变质玄武岩体系中的碳酸盐矿物之间的转变反应除了受压力控制之外,还受到温度和体系中铁含量的影响。随着压力的升高蚀变玄武岩中碳酸盐矿物会发生方解石/文石-白云石-菱镁矿的转变,但在高压/超高压条件下,温度的升高可以使菱镁矿转变成白云石。碳酸盐矿物中的铁含量受到体系中铁含量的影响,白云石和菱镁矿中的铁含量随着体系中铁含量的增加而增加。在水不饱和条件下,洋壳不管是沿着低温还是高温地热梯度线俯冲到岛弧深度,蚀变玄武岩体系几乎都不发生脱碳作用。然而在水饱和条件下,当洋壳沿着高温以及哥斯达黎加地热梯度线俯冲到岛弧深度时,蚀变玄武岩体系中的碳几乎可以全部脱出去。蚀变玄武岩体系中水含量的增加可以促进体系的脱碳作用。  相似文献   

17.
The upper mantle, crust, hydrosphere and atmosphere of Earth are kept in a geophysical, geochemical and thermodynamical state far from astrophysical and planetary equilibrium. The system oscillates around a quasi-stable centre following laws governing dissipative or dynamic systems. The energy and materials necessary for such global pseudo-equilibria are fed in, stored and released on a geological time-scale by (a) the energy and electron channelling processes of photosynthesis, respiration and fermentation, (b) biologically controlled accumulation of energy and matter into crustal reservoirs and much later (c) release of the latter from crust and upper mantle into surface-related geotectonical and geochemical cycles. Phototrophic and chemorganotrophic bacterial microorganisms of microbial mats, potential stromatolites or microbialites are capable of anoxygenic and oxygenic photosynthesis, of aerobic and anaerobic respiration and of organic and inorganic fermentation, i.e. disproportioning of energy-rich molecules. In this way large amounts of photosynthate are transformed on a global scale into hydrocarbons and sulphides (sulphate serving as electron acceptor for anaerobic respiration or fermentation). Inorganic reduced compounds produced by the same processes of photosynthesis followed by respiration and fermentation are stored as sulphides of iron, lead, zinc, silver, gold etc. All the aforementioned microbial processes can transfer energies and matter at a global scale. Thus disparities of the Earth's crust and mantle from the geochemical equilibrium may not be caused solely by internal temperature, radioactivity and gravity gradients, but increasingly by life processes. The biogenic formation of energy-rich compounds on a global scale delivers huge amounts of energy and electrons to the crust, which are recycled through geological time. The quantities of energy involved appear in themselves to be sufficient to provide the driving force for geotectonic processes. Thus, a model of geophysiological equilibration of geochemical cycles and geotectonics is proposed in which the biota play the role of energy and matter transmitters for geodynamic processes. Living matter controls and transfers more than 10% of the Earth's mass in this system with turnover times of up to 500 million years. The transfer speed of each individual atom according to the model must have gradually decreased since the Precambrian, while the amounts of energy and matter stored and cycled have in turn increased, as also witnessed by the increase in the thickness of the crust. Earth as a bioplanet has come of age.  相似文献   

18.
The North Tyrrhenian–Northern Apennines post-collisional system (NTAS) has been analysed on the basis of marine reflection profiles and bibliographic sources with the aim of providing an up-to-date geotectonic and evolutive framework consistent with structural data. The continental rifting began to affect the most internal (western) side of the system in the middle (?)-upper Miocene, while the most external (eastern) zones were touched by rifting only in Pleistocene times. The birth and development of extensive, asymmetric basins took place with a progressive speeding up of rifting towards the external sectors. A diachronous, regionally extended and eastward rejuvenating unconformity, recognizable within the Neogene–Quaternary basins, marks the passage from the syn-rift to the post-rift tectonic regime. While the first is everywhere dominated by extension, the second one produces vertical movements. Reflection terminations related to this unconformity are interpreted in terms of vertical tectonic component. Three zones that experienced different post-rift vertical movements are thus recognized in the NTAS: subsidence in the North Tyrrhenian deep water region; tectonic stability or alternation of moderate subsidence and uplift in the continental shelf and western Tuscany, strong uplift in eastern Tuscany. The updated structural data demonstrate that the NTAS upper crust is crosscut by both Tyrrhenian-dipping and Apennine-dipping low-angle detachment planes, above which the upper crustal blocks rotated and experienced extensional transport along two opposite directions: to the west and to the east, respectively. The coexistence of opposite-dipping crustal surfaces bears two fundamental implications for the NTAS geodynamics. First it stresses the importance of the anti-Apennine transfer faults, since they separate crustal blocks of opposite extension polarity. Secondly, it testifies that the extension tectonics not only re-utilized former crustal thrust planes, but also gave origin to new significant E- and NE-dipping detachment planes. Plan and crossview geometries of faults, together with considerations on the role of the metamorphic core complexes, point to an interpretation of the NTAS structure that is more consistent with the ‘anastomosing shear’ model rather than the 'simple shear' or the ‘delamination’ ones.  相似文献   

19.
A worldwide database of over 13,800 integrated U–Pb and Hf-isotope analyses of zircon, derived largely from detrital sources, has been used to examine processes of crustal evolution on a global scale, and to test existing models for the growth of continental crust through time. In this study we introduce a new approach to quantitatively estimating the proportion of juvenile material added to the crust at any given time during its evolution. This estimate is then used to model the crustal growth rate over the 4.56 Ga of Earth's history. The modelling suggests that there was little episodicity in the production of new crust, as opposed to peaks in magmatic ages. The distribution of age-Hf isotope data from zircons worldwide implies that at least 60% of the existing continental crust separated from the mantle before 2.5 Ga. However, taking into consideration new evidence coming from geophysical data, the formation of most continental crust early in Earth's history (at least 70% before 2.5 Ga) is even more probable. Thus, crustal reworking has dominated over net juvenile additions to the continental crust, at least since the end of the Archean. Moreover, the juvenile proportion of newly formed crust decreases stepwise through time: it is about 70% in the 4.0–2.2 Ga time interval, about 50% in the 1.8–0.6 Ga time interval, and possibly less than 50% after 0.6 Ga. These changes may be related to the formation of supercontinents.  相似文献   

20.
Continental transform boundaries in detail consist of zones of fault-bounded blocks adjacent to the principal active transform fault(s). Relative movement of these blocks in response to plate boundary motions gives rise to differential vertical displacements of the earth's crust and hence exercises a degree of control on the tectonic evolution of sedimentary basins adjacent to the transform boundary. The Cenozoic sedimentary basins of southwest New Zealand have several features in common that may be attributed directly to the movement on the adjacent plate boundary. However, their location, detailed sedimentary evolution and tectonic development may best be understood in the context of the relative displacements of a number of fault-bounded blocks, in response to the plate motions. In particular, movements of the Fiordland block, bounded by the Alpine and Moonlight fault zones, exercised a large measure of influence on the development of the basins. The tectonic model presented is consistent with plate boundary motions inferred from marine magnetic anomalies while at the same time providing an explanation for many of the more detailed features of the basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号