首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magmatic rocks of variable age and composition crop out extensively in Western and Northwestern Anatolia. In the present study we subdivide these granitoids according to their ages. The young granitoids (Late Cretaceous to Late Miocene) develop high-temperature metamorphic aureoles. Six isochronous belts are defined, which become progressively younger from north to south. The late Eocene to late Miocene granitoid belts are curved and open to the southwest. The old granitoids (Cambrian to Middle Jurassic) are present in the northwestern and northern parts of Anatolia. Many of their radiometric ages are disturbed as a result of later tectonic events responsible for the present-day structure of Western Turkey. Except for Cambrian granitoids, these rocks result from a series of northward-dipping subduction zones of Hercynian to Late Carboniferous age, along the Karakaya trench up to the Late Triassic, along and north of the Izmir-Ankara zone during the Middle Jurassic to the Late Cretaceous, and possibly north of the Hellenic subduction zone since the Paleogene.  相似文献   

2.
《International Geology Review》2012,54(10):1756-1770
The Pacific Mobile belt is differentiated into an outer (continental) zone of predominantly Mesozoic folding (Verkhoyansk -Chukotka, Mongolo-Okhotsk, and Sikhote-Alin folded provinces) and an inner oceanic zone of Cenozoic folding, adjacent to mobile provinces of the "island arc" type (Sakhalin, the Kuriles, Kamchatka). These zones are separated by the East-Asian volcanic belt associated with a fault system which cuts off the older Mesozoic Verkhoyansk-Chukotka and Sikhote- Alin structures. Two important mineralization epochs are evident - Sino-Cambrian and late Mesozoic- Cenozoic. The Mesozoic-Cenozoic mineralization epoch exhibits a definite tendency for “rejuvenation” of the mineralization processes, going away from the continent and toward the Pacific trough, from late Jurassic in the eastern Trans-Baykal region and parts of the northeast to Neogene in the province of the Okhotsk geosynclines. An outstanding feature of endogeneous mineralization in this region is the linear arrangement of the ore zones determined by a system of major magma-controlling and other faults.—C. E. Sears  相似文献   

3.
This paper reports the composition and age of rocks dredged from the Kashevarov Trough (central Sea of Okhotsk) during cruise 41 of the R/V Akademik M.A. Lavrentyev in 2006. It was found that the Late Cretaceous and Eocene volcanics from the Kashevarov Trough and Okhotsk-Chukotka volcanic belt, structures of which are traceable in the Sea of Okhotsk, have similar petrographic and geochemical features. The Cenozoic sedimentary cover consists of three different-age complexes: (1) the late Oligocene (∼28.2–24.0 Ma); (2) the terminal late Oligocene-early Miocene (24.0–20.3 Ma); (3) the terminal late Pliocene-early Pleistocene (2.0–1.0 Ma). The upper Oligocene-lower Miocene sediments were deposited in relatively shallow-water settings, whereas the late Pliocene-early Pleistocene complex was formed in deeper environments, which was probably determined by tectonic processes. The geological data indicate that the Kashevarov Trough and the surrounding underwater rises represented in the Oligocene-early Miocene a single shelf zone of the Sea of Okhotsk, which is underlain by a structurally integral Mesozoic basement and is now subsided to depths of 800–1000 m.  相似文献   

4.
The conditions of magma formation were reconstructed on the basis of characteristic features of the evolution of the Kurile-Kamchatka island-arc system, structural and chemical zoning patterns of volcanic complexes, and available published data on peridotite and basalt melting and stability of hydrous minerals. It was shown that the volcanic arc of the Sredinnyi Range of Kamchatka occurs now at the final stage of subduction, whereas subduction beneath the volcanic arc of eastern Kamchatka began at the end of the Miocene, after its jump into the present-day position. The volcanism of Southern Kamchatka and the Kuriles has occurred under steady-state subduction conditions since the Miocene and is represented by typical island-arc magmas. The latter are generated in a mantle wedge, where the melting of water-saturated peridotite occurs in a high-temperature zone under the influence of fluid. The formation of the frontal and rear volcanic zones was related to the existence of two levels of water release from various hydrous minerals. During the initial and final stages of subduction, as well as in the zone of Kamchatka—Aleutian junction, partial melting is possible in the upper part of the subducted slab in contact with a hotter mantle material compared with the mantle in a steady-state regime. This is responsible for the coexistence of predominant typical island-arc rocks, rocks with intraplate geochemical signatures, and highly magnesian rocks, including adakites.  相似文献   

5.
东北地区中生代火山岩形成的构造环境   总被引:8,自引:0,他引:8  
东北地区中生代火山岩可划分为晚三叠世-早白垩世中期、早白垩世晚期及以后两个大旋回,和晚三叠世-中侏罗世、晚侏罗世-早白垩世中期、早白垩世晚期及以后三大期次.早期火山岩分布局限,主要分布于华北板块北缘(侧);中期火山活动强烈,并逐渐向北东方向迁移,是古亚洲洋构造域与滨西太平洋构造域叠加产物;晚期火山活动较弱,逐渐向东迁移,是滨西太平洋板块俯冲作用单一体制环境的产物.  相似文献   

6.
The Pre-Betic is the most northerly of the Alpine zones forming the Betic Cordilleras of southern Spain. It consists of strongly folded and faulted Mesozoic and Tertiary rocks, the oldest of which are ferruginous and gypsiferous Triassic mudstones, followed by a predominantly carbonate facies of Cretaceous, Palaeogene and Miocene age. Although this sequence is interrupted by a number of minor unconformities, the major structures were formed during the middle or late Miocene. The highly incompetent Triassic rocks are the most strongly deformed, and form diapiric intrusions discordant to regional structural trends in the younger rocks. The latter are essentially of two facies: massive competent limestones which are deformed by relatively simple folds of large wavelength, and highly incompetent marl-limestone interbeds with complex disharmonic folds and crush belts. Faults include low-angle and high-angle thrusts, gravity slides and wrench faults. The regional tectonic strike is ENE to NE, but the diapiric intrusions mostly follow WNW and N directions. These intrusions have pushed the younger rocks aside, the result being polyphase structures of several trends.Less intense post-Miocene tectonics are mostly associated with continued diapirism and have resulted in the folding and tilting of the late Miocene to Quaternary elastic sediments.  相似文献   

7.
Structural evolution of the Kamchatka–Aleutian junction area in late Mesozoic and Tertiary was generally controlled by (1) the processes of subduction in Kronotskiy and Proto-Kamchatka subduction zones and (2) collision of the Kronotskiy arc against NE Eurasia margin. Two structural zones of the pre-Pliocene age and six structural assemblages are recognized in studied region. 1: Eastern ranges zone comprises SE-vergent thrust folded belt, which evolved in accretionary and collisional setting. Two structural assemblages (ER1 and ER2), developed there, document shortening in the NW–SE direction and in the N–S direction, respectively. 2: Eastern Peninsulas zone generally corresponds to Kronotskiy arc terrane. Four structural assemblages are recognized in this zone. They characterize (1) precollisional deformations in the accretionary wedge (EP1) and in the fore-arc basin and volcanic belt (EP2), and (2) syn-collisional deformation of the entire Kronotskiy terrane in plunging folds (EP3) and deformations in the foreland basin (EP4). Analysis of paleomagnetic declinations versus present day structural strike in the Kronotskiy arc terrane shows that originally the arc was trending from west to east. Relative position of the accretionary wedge, fore-arc basin and volcanic belt, as well as northward dipping thrusts in accretionary wedge indicate, that a northward dipping subduction zone was located south of the arc. The accretionary wedge developed from the Late Cretaceous through the Eocene, and it implies that the subduction zone maintained its direction and position during this time. It implies that Kronotskiy arc was neither a part of the Pacific nor Kula plates and was located on an individual smaller plate, which included the arc and Vetlovka back-arc basin. Motion of the Kronotskiy arc towards Eurasia was connected only with NW-directed subduction at Kamchatka margin since Middle Eocene (42–44 Ma). Emplacement of the Kronotskiy arc at the Kamchatka margin occurred between Late Eocene and Early Miocene. This is based on the age of syn-collisional plunging folds in Kronotskiy terrane, and provenance data for the Upper Eocene to Middle Miocene Tyushevka basin, which indicate in situ evolution of the basin with respect to Kamchatka. Collision was controlled by the common motion of the Kronotskiy arc with Pacific plate towards the northwest, and by the motion of the Eurasian margin towards the south. The latter motion was responsible for the southward deflection of the western part of the Kronotskiy arc (EP3 structures), and for oblique transpressional structures in the collisional belt (ER2 structures).  相似文献   

8.
Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia–Manzano Mountains)—where basement rocks were exposed in Precambrian-cored uplifts—indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous–Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous–Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico.The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks.  相似文献   

9.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

10.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

11.
Petrological, geochemical, and isotope geochronological aspects of the evolution of calc-alkaline magmatism were investigated in the Western Okhotsk flank zone, the Okhotsk segment, and the Eastern Chukchi flank zone of the Okhotsk-Chukotka volcanic belt (OCVB). The OCVB is a tectonotype of continental margin volcanic belts comprising much greater volumes of felsic ignimbritic volcanics compared with mature island arcs (MIA, Kuril-Kamchatka and Aleutian) and the Andean continental margin. The volcanic rocks of continental margin volcanic belts (OCVB and Andean belt) are enriched in K, Ti, and P compared with the rocks of MIA and show a trend toward the field of high-potassium calc-alkaline series. Primitive andesite varieties (Mg# > 0.6) were not yet found in the OCVB, but there are relatively calcic varieties unknown in Andean-type structures and a significant fraction of moderately alkaline rocks, which are not typical of MIA. Variations in trace and major element characteristics in the basalts and andesites of the OCVB were interpreted as reflecting the competing processes of assimilation/mixing and fractional crystallization during the evolution of the parental basaltic magma. Significant lateral variations were established in the composition of the mantle sources of calc-alkaline magmas along the OCVB over more than 2500 km. The initial isotopic ratios of Sr, Nd, and Pb in the volcanics of the Okhotsk segment are relatively depleted and fall near the mixing line between PREMA and BSE. The magma source of the Western Okhotsk flank zone is most enriched and approaches EMI, whereas that of the central and eastern Chukchi zones contains an admixture of the EMII component. The geochronological characteristics of all the main stages of OCVB magmatism were comprehensively studied by U-Pb SHRIMP and ID-TIMS zircon dating (86 samples) and 40Ar/39Ar analysis (73 samples). In general, a discontinuous character was established for the OCVB magmatism from the middle Albian to the early Campanian (106–77 Ma). The volcanism is laterally asynchronous. There are several peaks of volcanism with modes at approximately 105, 100, 96, 92.5, 87, 82, and 77 Ma. The Coniacian-Santonian peaks correspond to the most extensive stages of the middle and late cycles of felsic volcanism. A decreases and a hiatus in magmatic activity were reconstructed for the end of the Cenomanian and the beginning of the Turonian. The volcanism was terminated by plateau basalts with ages of 76–78 Ma, which mark a change in the geodynamic setting from frontal subduction to the regime of a transform margin with local extension in zones normal to the slip direction. A catastrophic character of eruptions with rather narrow ranges of volcanism (<2 Myr) were established taking into account new reliable age estimates for some individual large calderas. The accumulation rate of volcanic materials in such structures was up to 0.15–0.36 km3/yr and even higher.  相似文献   

12.
刘雪亚  王荃 《地球学报》1983,5(2):79-94
亚洲东部及太平洋西北部中一新生代的地质发展有两个突出的特点:其一是岩浆岩的广泛发育,构成举世瞩目的东亚滨太平洋岩浆岩带;其二是形成一系列断陷盆地,包括边缘海、陆缘海及一些内陆盆地。前者为人类提供了各种内生矿产;后者则蕴藏丰富的能源。据近年研究,该区规模巨大的岩浆岩带和断陷盆地,均是中生代以来海洋板块与欧亚大陆板块聚敛时,俯冲和深熔以及由此派生的局部拉裂扩张的结果。本文试图通过对东亚及西太平洋板块构造的研究,初步揭示该区中一新生代岩浆活动的特点及规律性,并探讨其间的联系。  相似文献   

13.
海拉尔盆地位于大兴安岭西侧,盆内存在多套火山-沉积岩组合.通过对海拉尔盆地Chu8井等4处火山岩样品进行的锆石LA-ICP-MS U-Pb年代学研究,探讨了海拉尔盆地火山岩的形成时代和构造背景,为盆内和邻区地层对比以及大兴安岭地区构造演化提供了依据.研究区4个火山岩样品的锆石均呈自形-半自形晶,显示出典型的岩浆生长环带,结合其高的Th/U比值(0.22~1.50),说明其属于岩浆成因.测年结果表明,海拉尔盆地布达特群确实存在时代为晚三叠世-早侏罗世(214.4±4.3 Ma)的火山岩,结合前人研究,可将盆内火山作用划分为4期:分别为中-晚石炭世基底岩浆岩(320~290 Ma);晚三叠世-早侏罗世早期布特达特群火山碎屑岩组(224~197 Ma);晚侏罗世-早白垩世早期塔木兰沟组(152~138 Ma);早白垩世晚期铜钵庙组(128~117 Ma).大兴安岭地区各期岩浆作用的地球化学特征、时空分布特征以及盆地地震剖面特征表明,中-晚石炭世基底岩浆岩(320~290 Ma)是额尔古纳-兴安地块和松嫩地块碰撞造山后的伸展背景下形成的;晚三叠世-早侏罗世早期火山岩(224~197 Ma)是古亚洲洋闭合后的伸展背景下形成的,该期火山岩的发现说明古亚洲洋构造域对大兴安岭地区的影响至少延续到早侏罗世早期(197 Ma),而该区域蒙古-鄂霍茨克洋的俯冲碰撞最早可能开始于早侏罗世以后;晚侏罗世-早白垩世早期(152~138 Ma)和早白垩世晚期(128~117 Ma)火山岩的形成均与蒙古-鄂霍茨克洋碰撞闭合后的伸展作用有关.盆内部分火山岩样品中存在古元古代-新元古代捕获的锆石,这表明额尔古纳地块和兴安地块很可能存在着元古代结晶基底.   相似文献   

14.
本文以卫星图象信息为依据,结合野外调研,提出并确定了华北块体北缘存在:块体缝合线,褶皱-逆掩断层带,后孤碰撞带(断裂带),台槽过渡带,岩浆弧,以及燕山-喜山期的NNE向岩浆活动带、断陷带(断陷盆地)等双重构造的新认识。并在此基础上,对华北块体北缘与深成岩浆岩,燕山期岩浆活动带(包括火山岩带)有关的铀矿化作用的独特构造环境及“岩浆”型,断陷带中和面型等主要铀矿床成矿模式和铀成矿带的划分及其划分依据作了研究和探讨。并以铀矿床的实例作为佐证。  相似文献   

15.
For the first time, the age of the beginning of the volcanic activity within Sredinny metamorphic Massif is determined (7–6 Ma). We suppose that this event was caused by the collision of Kamchatka with the Kronotsk arc that started about 7 Ma from accretion of Shipunsky peninsula. We demonstrate that at least two types of rocks were erupted within Sredinny Range of Kamchatka in late Miocene times: typical islandarc rocks were produced in the central and northern parts of the Range, and hybrid type rocks—in its southernmost part.  相似文献   

16.
杨文采 《地质论评》2022,68(1):2022020013-2022020013
本文对西太平洋的洋-陆转换作用进行探讨。西太平洋洋-陆转换带在中国东部可分为华南、华北-黄海和东北3个区段。东北地区中-新生代洋-陆转换作用涉及古今太平洋板块和蒙古—鄂霍茨克洋板块两方面俯冲作用的影响,产生大面积中基性岩浆和火山活动,从侏罗纪一直延伸到现在。不同于东北和华南地区,华北-黄海有克拉通型的岩石圈,在晚侏罗世—新近纪因为太平洋板块的大角度旋转造成软流圈低黏度物质上涌,和地壳拉张与幔源岩浆的底侵,造成上地壳裂谷型沉积盆地。燕山地区在侏罗纪与东北地区类似,有强烈的软流圈上涌和岩石圈岩石部分熔融,产生强烈岩浆活动。在白垩纪到新生代,因为蒙古—鄂霍茨克洋闭合和太平洋板块大角度旋转,发生沿蒙古—鄂霍茨克洋的转换断层的拉张,产生从南蒙古过锡林浩特的NW向玄武质岩浆和火山带。洋-陆转换带不同区段有不同的动力学作用演化过程,与先期岩石圈的性质、大洋板块俯冲带的分布、方向变化和俯冲持续时间、以及后期俯冲带后撤作用都有密切关系。洋-陆转换作用的统一后果是大陆的增生,但是不同区段大陆增生和物质运动的模式是不一样的。  相似文献   

17.
Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic–ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene–Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents.Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.  相似文献   

18.
准噶尔盆地东北缘构造特征、演化及与油气的关系   总被引:4,自引:1,他引:4  
通过“建造”与“改造”特征的综合分析,划分了准噶尔盆地东北缘的构造带:早古生代(1-2)陆缘逆冲带;晚古生代(D1)混杂岩浆碰撞带;晚古生代(D1)火山岩浆岛弧挤带;晚古生代(D2-3)弧后盆地褶皱带;晚古生代(C1-P2)陆缘盆地褶皱带以及中生代前陆盆地平缓背斜带等6个构造带。自古生代以来,曾发生了两次拉张-碰撞(闭合)-推覆的演化过程,均表现为“北挤南拉”和“北老南新”的构造迁移,直到二叠纪末期,相当于晚海西期构造运动,全区发生大规模褶皱变形和挤压推覆。最后依据构造特征和演分分析结果,笔建议在双井子级盆地褶皱带具备良好石油地质条件的有利油气区做进一步工作。  相似文献   

19.
The paper presents the results of reconstruction of Middle Eocene provenances for the West Kamchatka sedimentary basin (WKSB) corresponding to the Tigil area. It has been established that the early (Eocene) evolution stage of WKSB was marked by the deposition of terrigenous sediments in intermontane depressions followed by the accumulation of shallow-marine sediments after transgression. In terms of the composition, sandstones of the Middle Eocene Snatol Formation correspond to graywackes. With respect to the geochemistry of sandstones, their provenances were confined to an active continental margin and island arc. The mineral composition of the heavy fraction suggests an alternating dominance of felsic and mafic rocks in the provenances. Dating of the clastic zircon from sandstones of the Snatol Formation by the LA-ICP-MS method revealed a wide variation range of their age. The most significant peak is close to the age of calc-alkaline magmatism in the Okhotsk–Chukotka volcanic belt. This fact provides insight into the Eocene paleogeography: the major rock provenances were located in the Okhotsk–Chukotka volcanic belt and the eastern Achaivayam–Valagin island arc. Local sources of clastic material were represented by the Utkholok and Kinkil volcanic belts.  相似文献   

20.
The traverse of the Central Alps between Lake Constance and Lake Como (eastern Switzerland, northern Italy) allows the reconstruction of a cross-section through a collision belt some 140 km wide and 40 km deep. It can be described in terms of a series of structural zones (A–F), defined by the age and character of the latest phase of penetrative deformation affecting both basement and cover rocks, each zone showing a characteristic structural history. These zones do not coincide with the well-known tectono-stratigraphic Alpine subdivisions (Helvetic, Pennine, Austroalpine) which are based on gross geometry, facies and petrography. Zones A and B, in the north, developed during late Oligocene and Miocene times, affecting the Helvetic realm and the already overlying Pennine and Austroalpine units. Zone A is characterized by a steeply dipping penetrative cleavage SA, zone B by the same cleavage later modified by nappe-forming movements. Zone F, in the south, also developed during the late Oligocene and Miocene, first as a monoclinal flexure, later as a steeply dipping zone of mylonitization and cataclasis (foliation Sf), affecting Pennine and Austroalpine units. The final manifestation of these movements was the Tonale line and their net result was the uplift of the region to the north by about 20 km. Between these two belts lay an area in which late Oligocene-Miocene movements had little effect — structural zones C (Pennine), D (Pennine-Austroalpine transition) and E (Austroalpine). In zones C and D, the latest phase of penetrative deformation, resulting in large recumbent fold structures and a penetrative foliation Sc zone C, can be dated as late Eocene-early Oligocene. This seems to be related to the overriding of the Austroalpine nappe complex (zone E), which already showed the effects of a late Cretaceous orogeny.Unravelling these events backwards, reveals, at the Eocene—Oligocene boundary, a southward dipping subduction zone in the process of locking. Its mouth is full of upper Cretaceous-Eocene flysch; its throat is choked by the Pennine nappe complex, undergoing the sc ductile deformation. Before subduction, the Pennine nappe complex can best be described as a mega-mélange-a tectonic mixture of large fragments of continental basement, oceanic basement, trough-facies cover and platform-facies cover, already showing a complicated structural history. It is supposed that collision started in mid-Cretaceous times, not at a single subduction suture (trench), but by complicated surficial processes across a wide zone, as non-matching, rifted and thinned continental margins approached and small oceanic remnants were obducted. Post-mid-Oligocene events are essentially intra-plate compressional effects, combined with isostatic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号