首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper presents an experimental implementation and verification of multi‐degrees‐of‐freedom effective force testing (MDOF‐EFT). An experimental setup that consists of a two‐degrees‐of‐freedom structural system and two hydraulic actuators at the Johns Hopkins University was utilized in this study. First, experimental system identification was performed to develop compatible analytical models for the multi‐input and multi‐output systems. Dynamics of the control plant, that is, the valve‐to‐force relations, were modeled with a rational polynomial transfer function matrix and delay components. By using the analytical model, a centralized decoupling loop‐shaping force feedback controller was designed such that the forces are uncoupled and the loop transfer functions have desirable dynamic characteristics in the frequency domain. Then, a series of harmonic force and earthquake simulation tests were performed to assess capabilities and limitations of MDOF‐EFT. Experimental results showed that the dynamic forces in the two actuators were accurately controlled to provide tracking while the system was stable and robust for the entire period of the experiment. Furthermore, earthquake simulation tests with increased levels of the reference forces demonstrated the feasibility of MDOF‐EFT with highly nonlinear test structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Effective force testing (EFT) is one of the force‐based experimental methods used for performance evaluation of structures that incorporate dynamic force control using hydraulic actuators. Although previous studies have shown successful implementations of force control, controllable frequency ranges are limited to low frequencies (10 Hz). This study presents the EFT method using a robust loop shaping force feedback controller that can extend the frequency range up to 25 Hz or even higher. Unlike the conventional PID controllers, loop shaping controllers can provide robustness for a high level of force measurement noise. This study investigates the dynamic properties of hydraulic actuators and the design of a loop shaping controller that compensates for control–structure interaction and suppresses the effect of oil‐column resonance. The designed loop shaping controller was successfully implemented into an EFT setup at the Johns Hopkins University. An experimental investigation of the loop shaping controller was performed under step, random, and earthquake force loadings. Experimental results showed that the loop shaping controller provided excellent force tracking performance and robustness for dynamic force loadings. It was also shown that the loop shaping controller had the gain margin of 9.54 dB at the frequency of 28 Hz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we propose a new actuator control algorithm that achieves the design flexibility, robustness, and tracking accuracy to give real‐time hybrid‐simulation users the power to achieve highly accurate and robust actuator control. The robust integrated actuator control (RIAC) strategy integrates three key control components: loop shaping feedback control based on H optimization, a linear‐quadratic‐estimation block for minimizing noise effect, and a feed‐forward block that reduces small residual delay/lag. The combination of these components provides flexible controller design to accommodate setup limits while preserving the stability of the H algorithm. The efficacy of the proposed strategy is demonstrated through two illustrative case studies: one using large capacity but relatively slow actuator of 2500 kN and the second using a small‐scale fast actuator. Actuator tracking results in both cases demonstrate that the RIAC algorithm is effective and applicable for different setups. Real‐time hybrid‐simulation validation is implemented using a three‐DOF building frame equipped with a magneto‐rheological damper on both setups. Results using the two very different physical setups illustrate that RIAC is efficient and accurate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Conventional shake tables employ linear controllers such as proportional‐integral‐derivative or loop shaping to regulate the movement. However, it is difficult to tune a linear controller to achieve accurate and robust tracking of different reference signals under payloads. The challenges are mainly due to the nonlinearity in hydraulic actuator dynamics and specimen behavior. Moreover, tracking a high‐frequency reference signal using a linear controller tends to cause actuator saturation and instability. In this paper, a hierarchical control strategy is proposed to develop a high‐performance shake table. A unidirectional shake table is constructed at the University of British Columbia to implement and evaluate the proposed control framework, which consists of a high‐level controller and one or multiple low‐level controller(s). The high‐level controller utilizes the sliding mode control (SMC) technique to provide robustness to compensate for model nonlinearity and uncertainties experienced in experimental tests. The performance of the proposed controller is compared with a state‐of‐the‐art loop‐shaping displacement‐based controller. The experimental results show that the proposed hierarchical shake table control system with SMC can provide superior displacement, velocity and acceleration tracking performance and improved robustness against modeling uncertainty and nonlinearities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   

7.
Real‐time pseudodynamic (PSD) and hybrid PSD test methods are experimental techniques to obtain the response of structures, where restoring force feedback is used by an integration algorithm to generate command displacements. Time delays in the restoring force feedback from the physical test structure and/or the analytical substructure cause inaccuracies and can potentially destabilize the system. In this paper a method for investigating the stability of structural systems involved in real‐time PSD and hybrid PSD tests with multiple sources of delay is presented. The method involves the use of the pseudodelay technique to perform an exact mapping of fixed delay terms to determine the stability boundary. The approach described here is intended to be a practical one that enables the requirements for a real‐time testing system to be established in terms of system parameters when multiple sources of delay exist. Several real‐time testing scenarios with delay that include single degree of freedom (SDOF) and multi‐degree of freedom (MDOF) real‐time PSD/hybrid PSD tests are analyzed to illustrate the method. From the stability analysis of the real‐time hybrid testing of an SDOF test structure, delay‐independent stability with respect to either experimental or analytical substructure delay is shown to exist. The conditions that the structural properties must satisfy in order for delay‐independent stability to exist are derived. Real‐time hybrid PSD testing of an MDOF structure equipped with a passive damper is also investigated, where observations from six different cases related to the stability plane behavior are summarized. Throughout this study, root locus plots are used to provide insight and explanation of the behavior of the stability boundaries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a study of the use of servo‐hydraulic systems in the implementation of real‐time large‐scale structural testing methods in force control such as effective force testing (EFT) and in displacement control such as real‐time pseudodynamic testing (RPsD). Mathematical models for both types of control systems are presented and used to investigate the influences of servo‐systems on the overall system performance. Parameters investigated include the overall system dynamics, nonlinearities of servo‐systems, actuator damping, system mass including piston mass, and system response delay. Results of both numerical simulations and experiments showed that many of the influences of the servo‐hydraulic system that significantly affect the real‐time dynamic tests can be properly compensated through control schemes identified in this paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a new method, called the equivalent force control method, for solving the nonlinear equations of motion in a real‐time substructure test using an implicit time integration algorithm. The method replaces the numerical iteration in implicit integration with a force‐feedback control loop, while displacement control is retained to control the motion of an actuator. The method is formulated in such a way that it represents a unified approach that also encompasses the effective force test method. The accuracy and effectiveness of the method have been demonstrated with numerical simulations of real‐time substructure tests with physical substructures represented by spring and damper elements, respectively. The method has also been validated with actual tests in which a Magnetorheological damper was used as the physical substructure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Generally, the active structural control system belongs to the discrete‐time control system, and the sampling period is one of the most important factors that would directly affect the performance of the control system. In this paper, active control approaches by using the discrete‐time variable structure control theory are studied for reducing the dynamic responses of seismically excited building structures. Based on the discrete reaching law method, a feedback controller which includes the sampling period is presented. The controller is extended by introducing the saturated control method to avoid the adverse effect when the actuators are saturated due to unexpected extreme earthquakes. The simulation results are obtained for a single‐degree‐of‐freedom (SDOF) system and a MDOF shear building equipped with active brace system (ABS) under seismic excitations. It is found that the discrete variable structure control approach and its saturated control method presented in this paper are quite effective. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the stability of MDOF optimal direct output feedback control systems through analysis of system modal properties after the application of time-delayed control force. Explicit formula and numerical solution are obtained to determine the maximum delay time and critical delay time which cause system instability and control ineffectiveness, respectively. The results indicate that direct velocity feedback has longer maximum and critical delay times than state feedback. The feedback of non-collocated measurements will reduce maximum delay time. The ratios of maximum and critical delay times to structural natural period decrease as the active damping increases. For a given damped structure, a critical control weighting factor exists. When a larger control weighting factor is used, the control system will remain stable even with longer delay time. A formula is also developed to determine the critical control weighting factor so as to make the stability of MDOF control systems dominated by lower modes. Hence, the maximum delay time and critical delay time can be significantly lengthened by selecting an appropriate control weighting factor and/or adding higher modal dampings.  相似文献   

13.
It has been shown that the operator‐splitting method (OSM) provides explicit and unconditionally stable solutions for quasi‐static pseudo‐dynamic substructure testing. However, the OSM provides only an explicit target displacement but not an explicit target velocity, so that it is essentially an implicit method for real‐time substructure testing (RST) when the velocity‐dependent restoring force is considered. This paper proposes a target velocity formulation based on the forward difference of the predicted displacements so as to render the OSM explicit for RST. The stability and accuracy of the resulting OSM‐RST algorithm are investigated. It is shown that the OSM‐RST is unconditionally stable so long as the non‐linear stiffness and damping are of the softening type (i.e. the tangent stiffness and damping never exceed the initial values). The stability of the OSM‐RST for structures with infinite tangent damping coefficient or stiffness is also proved, and the stability of the method for MDOF structures with a non‐classical damping matrix is demonstrated by an energy criterion. The effects of actuator delay and compensation are analysed based on the bilinear approximation of the actuator step response. Experiments on damped SDOF and MDOF structures verify that the stability of the OSM‐RST is preserved when the experimental substructure generates velocity‐dependent reaction forces, whereas the stability of real‐time substructure tests based on the central difference method is worsened by the damping of the specimen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Real‐time hybrid simulation (RTHS) is an effective and versatile tool for the examination of complex structural systems with rate dependent behaviors. To meet the objectives of such a test, appropriate consideration must be given to the partitioning of the system into physical and computational portions (i.e., the configuration of the RTHS). Predictive stability and performance indicators (PSI and PPI) were initially established for use with only single degree‐of‐freedom systems. These indicators allow researchers to plan a RTHS, to quantitatively examine the impact of partitioning choices on stability and performance, and to assess the sensitivity of an RTHS configuration to de‐synchronization at the interface. In this study, PSI is extended to any linear multi‐degree‐of‐freedom (MDOF) system. The PSI is obtained analytically and it is independent of the transfer system and controller dynamics, providing a relatively easy and extremely useful method to examine many partitioning choices. A novel matrix method is adopted to convert a delay differential equation to a generalized eigenvalue problem using a set of vectorization mappings, and then to analytically solve the delay differential equations in a computationally efficient way. Through two illustrative examples, the PSI is demonstrated and validated. Validation of the MDOF PSI also includes comparisons to a MDOF dynamic model that includes realistic models of the hydraulic actuators and the control‐structure interaction effects. Results demonstrate that the proposed PSI can be used as an effective design tool for conducting successful RTHS. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   

15.
Complexities inherent to large‐scale modern civil structures pose many challenges in the design of feedback structural control systems for dynamic response mitigation. With the emergence of low‐cost sensors and control devices creating technologies from which large‐scale structural control systems can deploy, a future control system may contain hundreds, or even thousands, of such devices. Key issues in such large‐scale structural control systems include reduced system reliability, increasing communication requirements, and longer latencies in the feedback loop. To effectively address these issues, decentralized control strategies provide promising solutions that allow control systems to operate at high nodal counts. This paper examines the feasibility of designing a decentralized controller that minimizes the ?? norm of the closed‐loop system. ?? control is a natural choice for decentralization because imposition of decentralized architectures is easy to achieve when posing the controller design using linear matrix inequalities. Decentralized control solutions are investigated for both continuous‐time and discrete‐time ?? formulations. Numerical simulation results using a 3‐story and a 20‐story structure illustrate the feasibility of the different decentralized control strategies. The results also demonstrate that when realistic semi‐active control devices are used in combination with the decentralized ?? control solution, better performance can be gained over the passive control cases. It is shown that decentralized control strategies may provide equivalent or better control performance, given that their centralized counterparts could suffer from longer sampling periods due to communication and computation constraints. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A semi‐active fuzzy control strategy for seismic response reduction using a magnetorheological (MR) damper is presented. When a control method based on fuzzy set theory for a structure with a MR damper is used for vibration reduction of a structure, it has an inherent robustness, and easiness to treat the uncertainties of input data from the ground motion and structural vibration sensors, and the ability to handle the non‐linear behavior of the structure because there is no longer the need for an exact mathematical model of the structure. For a clipped‐optimal control algorithm, the command voltage of a MR damper is set at either zero or the maximum level. However, a semi‐active fuzzy control system has benefit to produce the required voltage to be input to the damper so that a desirable damper force can be produced and thus decrease the control force to reduce the structural response. Moreover, the proposed control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. The results of the numerical simulations show that the proposed semi‐active control system consisting of a fuzzy controller and a MR damper can be beneficial in reducing seismic responses of structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The discrete‐time variable structure control method for seismically excited linear structures with time delay in control is investigated in this paper. The control system with time delay is first discretized and transformed into standard discrete form which contains no time delay in terms of the time delay being integer and non‐integer times of sampling period, respectively. Then the discrete switching surface is determined using ideal quasi‐sliding mode and discrete controller is designed using the discrete approach‐law reaching condition. The deduced controller and switching surface contain not only the current step of state feedback but also linear combination of some former steps of controls. Numerical simulations are illustrated to verify the feasibility and robustness of the proposed control method. Since time‐delay effect is incorporated in the mathematical model for the structural control system throughout the derivation of the proposed algorithm, system performance and dynamic stability are guaranteed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In quasi‐static tests for structures with multi‐DOF, the forces exerted to the structures commonly follow a prescribed force profile, for example, triangular pattern and/or uniform pattern. Therefore, force control is the natural choice. However, force control is no longer applicable when the specimens sustain significant stiffness and strength degradation, particularly in collapse tests. To solve this problem, a force–displacement mixed control algorithm is proposed, which is able to achieve stable control in quasi‐static tests following prescribed force profiles. On the basis of the FlexTest IIm platform of the MTS Systems Corporation (14000 Technology Dr, Eden Prairie, MN 55344 United States), a test program named Tsinghua University mixed control test program, which uses a mixed control algorithm, was developed. The algorithm was initially applied to an elastic test of a cantilever column to verify its accuracy and stability and then to a collapse test of a multistory RC frame to investigate its effectiveness. In the collapse test, the effects of major control parameters, that is, the number of iterative rounds and the loading time of each round on the control accuracy, were also studied. The test results show that the test program applying the mixed control algorithm can achieve stable control of the collapse tests maintaining the expected force profile. Increasing the number of iterative rounds and the loading time of each round can improve the control accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Time‐delay is an important issue in structural control. Applications of unsynchronized control forces due to time‐delay may result in a degradation of the control performance and it may even render the controlled structures to be unstable. In this paper, a state‐of‐the‐art review for available methods of time‐delay compensation is presented. Then, five methods for the compensation of fixed time‐delay are presented and investigated for active control of civil engineering structures. These include the recursive response method, state‐augmented compensation method, controllability based stabilization method, the Smith predictor method and the Pade approximation method, all are applicable to any control algorithm to be used for controlled design. Numerical simulations have been conducted for MDOF building models equipped with an active control system to demonstrate the stability and control performance of these time‐delay compensation methods. Finally, the stability and performance of the phase shift method, that is well‐known in civil engineering applications, have also been critically evaluated through numerical simulations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号