首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Climatic and hydrological changes will likely be intensified in the Upper Blue Nile (UBN) basin by the effects of global warming. The extent of such effects for representative concentration pathways (RCP) climate scenarios is unknown. We evaluated projected changes in rainfall and evapotranspiration and related impacts on water availability in the UBN under the RCP4.5 scenario. We used dynamically downscaled outputs from six global circulation models (GCMs) with unprecedented spatial resolution for the UBN. Systematic errors of these outputs were corrected and followed by runoff modelling by the HBV (Hydrologiska ByrånsVattenbalansavdelning) model, which was successfully validated for 17 catchments. Results show that the UBN annual rainfall amount will change by ?2.8 to 2.7% with a likely increase in annual potential evapotranspiration (in 2041–2070) for the RCP4.5 scenario. These changes are season dependent and will result in a likely decline in streamflow and an increase in soil moisture deficit in the basin.  相似文献   

2.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This study projected the future rainfall (2046–2065 and 2081–2100) for the North China Plain (NCP) using two stochastic statistical downscaling models, the non-homogeneous hidden Markov model and the generalized linear model for daily climate time series, conditioned by the large-scale atmospheric predictors from six general circulation models for three emission scenarios (A1B, A2 and B1). The results indicated that the annual total rainfall, the extreme daily rainfall and the maximum length of consecutive wet/dry days would decline, while the number of annual rainfall days would slightly increase (correspondingly rainfall intensity would decrease) in the NCP, in comparison with the base period (1961–2010). Moreover, the summer monsoon rainfall, which accounted for 50–75 % of the total annual rainfalls in NCP, was projected to decrease in the latter half of twenty-first century. The spatial patterns of change showed generally north–south gradients with relatively larger magnitude decrease in the northern NCP and less decrease (or even slightly increase) in the southern NCP. This could result in decline of the annual runoff by ?5.5 % (A1B), ?3.3 % (A2) and ?4.1 % (B1) for 2046–2065 and ?5.3 % (A1B), ?4.6 % (A2) and ?1.9 % (B1) decrease for 2081–2100. These rainfall changes, combined with the warming temperature, could lead to drier catchment soil profiles and further reduce runoff potential, would hence provide valuable references for the water availability and related climate change adaption in the NCP.  相似文献   

4.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrologic modelling has been applied to assess the impacts of projected climate change within three study areas in the Peace, Campbell and Columbia River watersheds of British Columbia, Canada. These study areas include interior nival (two sites) and coastal hybrid nival–pluvial (one site) hydro‐climatic regimes. Projections were based on a suite of eight global climate models driven by three emission scenarios to project potential climate responses for the 2050s period (2041–2070). Climate projections were statistically downscaled and used to drive a macro‐scale hydrology model at high spatial resolution. This methodology covers a large range of potential future climates for British Columbia and explicitly addresses both emissions and global climate model uncertainty in the final hydrologic projections. Snow water equivalent is projected to decline throughout the Peace and Campbell and at low elevations within the Columbia. At high elevations within the Columbia, snow water equivalent is projected to increase with increased winter precipitation. Streamflow projections indicate timing shifts in all three watersheds, predominantly because of changes in the dynamics of snow accumulation and melt. The coastal hybrid site shows the largest sensitivity, shifting to more rainfall‐dominated system by mid‐century. The two interior sites are projected to retain the characteristics of a nival regime by mid‐century, although streamflow‐timing shifts result from increased mid‐winter rainfall and snowmelt, and earlier freshet onset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045–65 and 2075–95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options.  相似文献   

7.
Abstract

Climate change is recognized to be one of the most serious challenges facing mankind today. Driven by anthropogenic activities, it is known to be a direct threat to our food and water supplies and an indirect threat to world security. Increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere will certainly affect hydrological regimes. The consequent global warming is expected to have major implications on water resources management. The objective of this research is to present a general approach for evaluating the impacts of potential climate change on streamflow in a river basin in the humid tropical zone of India. Large-scale global climate models (GCMs) are the best available tools to provide estimates of the effect of rising greenhouse gases on rainfall and temperature. However the spatial resolution of these models (250 km?×?250 km) is not compatible with that of watershed hydrological models. Hence the outputs from GCMs have to be downscaled using regional climate models (RCMs), so as to project the output of a GCM to a finer resolution (50 km?×?50 km). In the present work, the projections of a GCM for two scenarios, A2 and B2 are downscaled by a RCM to project future climate in a watershed. Projections for two important climate variables, viz. rainfall and temperature are made. These are then used as inputs for a physically-based hydrological model, SWAT, in order to evaluate the effect of climate change on streamflow and vegetative growth in a humid tropical watershed.

Citation Raneesh, K. Y. & Santosh, G. T. (2011) A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. 56(6), 946–965.  相似文献   

8.
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011–2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.  相似文献   

9.
ABSTRACT

Downscaling of climate projections is the most adapted method to assess the impacts of climate change at regional and local scales. This study utilized both spatial and temporal downscaling approaches to develop intensity–duration–frequency (IDF) relations for sub-daily rainfall extremes in the Perth airport area. A multiple regression-based statistical downscaling model tool was used for spatial downscaling of daily rainfall using general circulation models (GCMs) (Hadley Centre’s GCM and Canadian Global Climate Model) climate variables. A simple scaling regime was identified for 30 minutes to 24 hours duration of observed annual maximum (AM) rainfall. Then, statistical properties of sub-daily AM rainfall were estimated by scaling an invariant model based on the generalized extreme value distribution. RMSE, Nash-Sutcliffe efficiency coefficient and percentage bias values were estimated to check the accuracy of downscaled sub-daily rainfall. This proved the capability of the proposed approach in developing a linkage between large-scale GCM daily variables and extreme sub-daily rainfall events at a given location. Finally IDF curves were developed for future periods, which show similar extreme rainfall decreasing trends for the 2020s, 2050s and 2080s for both GCMs.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

10.
ABSTRACT

A rainfall–streamflow model is proposed, in which a downscaled rainfall series and its wavelet-based decomposed sub-series at optimum lags were used as covariates in GAMLSS (Generalized Additive Model in Location, Scale and Shape). GAMLSS is applied in climate change impact assessment using CMIP5 general climate model to simulate daily streamflow in three sub-catchments of the Onkaparinga catchment, South Australia. The Spearman correlation and Nash-Sutcliffe efficiency between the observed and median simulated streamflow values were high and comparable for both the calibration and validation periods for each sub-catchment. We show that the GAMLSS has the capability to capture non-stationarity in the rainfall–streamflow process. It was also observed that the use of wavelet-based decomposed rainfall sub-series with optimum lags as covariates in the GAMLSS model captures the underlying physics of the rainfall–streamflow process. The development and application of an empirical rainfall–streamflow model that can be used to assess the impact of catchment-scale climate change on streamflow is demonstrated.  相似文献   

11.
J. Vaze  J. Teng  F. H. S. Chiew 《水文研究》2011,25(9):1486-1497
Global warming can potentially lead to changes in future rainfall and runoff and can significantly impact the regional hydrology and future availability of water resources. All the large‐scale climate impact studies use the future climate projections from global climate models (GCMs) to estimate the impact on future water availability. This paper presents results from a detailed assessment to investigate the capability of 15 GCMs to reproduce the observed historical annual and seasonal mean rainfalls, the observed annual rainfall series and the observed daily rainfall distribution across south‐east Australia. The assessment shows that the GCMs can generally reproduce the spatial patterns of mean seasonal and annual rainfalls. However, there can be considerable differences between the mean rainfalls simulated by the GCMs and the observed rainfall. The results clearly show that none of the GCMs can simulate the actual annual rainfall time series or the trend in the annual rainfall. The GCMs can also generally reproduce the observed daily (ranked) rainfall distribution at the GCM scale. The GCMs are ranked against their abilities to reproduce the observed historical mean annual rainfall and daily rainfall distribution, and, based on the combined score, the better GCMs include MPI‐ECHAM5, MIUB, CCCMA_T47, INMCM, CSIRO‐MK3·0, CNRM, CCCMA_T63 and GFDL 2·0 and those with poorer performances are MRI, IPSL, GISS‐AOM, MIROC‐M, NCAR‐PCM1, IAP and NCAR‐CCSM. However, the reduction in the combined score as we move from the best‐ to the worst‐performing GCMs is gradual, and there is no evident cut‐off point or threshold to remove GCMs from climate impact studies. There is some agreement between the results here and many similar studies comparing the performance of GCMs in Australia, but the results are not always consistent and do significantly disagree with several of the studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Global greenhouse gases increase could be a threat to sustainable agriculture since it might affect both green water and air temperature. Using the outputs of 15 general circulation models (GCMs) under three SRES scenarios of A1B, A2 and B1, the projected annual and seasonal precipitation (P) and cardinal temperatures (T) were analyzed for five climatic zones in Iran. In addition, the probable effects of climate change on cereal production were studied using AquaCrop model. Data obtained from the GCMs were downscaled using LARS-WG for 52 synoptic stations up to 2100. An uncertainty analysis was done for the projected P and T associated to GCMs and SRES scenarios. Based on station observations, LARS-WG was capable enough for simulating both P and T for all the climatic zones. The majority of GCMs as well as the median of the ensemble for each scenario project positive P and T changes. In all the climatic zones, wet seasons have a higher P increase than dry seasons, with the highest increase (27.9–83.3%) corresponding to hyper-arid and arid regions. A few GCMs project a P reduction mainly in Mediterranean and hyper-humid climatic regions. The highest increase (11.2–44.5%) in minimum T occurred in Mediterranean climatic regions followed by semi-arid regions in which a concurrent increase in maximum T (2.9–14.6%) occurred. The largest uncertainty in P and cardinal T projection occurred in rainy seasons as well as in hyper-humid regions. The AquaCrop simulation results revealed that the increased cardinal T under global warming will cause 0–28.5% increase in cereal water requirement as well as 0–15% reduction in crop yield leading to 0–30% reduction in water use efficiency in 95% of the country.  相似文献   

13.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

14.
In accounting for uncertainties in future simulations of hydrological response of a catchment, two approaches have come to the fore: deterministic scenario‐based approaches and stochastic probabilistic approaches. As scenario‐based approaches result in a wide range of outcomes, the role of probabilistic‐based estimates of climate change impacts for policy formulation has been increasingly advocated by researchers and policy makers. This study evaluates the impact of climate change on seasonal river flows by propagating daily climate time series, derived from probabilistic‐based climate scenarios using a weather generator (WGEN), through a set of conceptual hydrological models. Probabilistic scenarios are generated using two different techniques. The first technique used probabilistic climate scenarios developed from statistically downscaled scenarios for Ireland, hereafter called SDprob. The second technique used output from 17 global climate models (GCMs), all of which participated in CMIP3, to generate change factors (hereafter called CF). Outputs from both the SDprob and the CF approach were then used in combination with WGEN to generate daily climate scenarios for use in the hydrological models. The range of simulated flow derived with the CF method is in general larger than those estimated with the SDprob method in winter and vice versa because of the strong seasonality in the precipitation signal for the 17 GCMs. Despite this, the simulated probability density function of seasonal mean streamflow estimated with both methods is similar. This indicates the usefulness of the SDprob or probabilistic approach derived from regional scenarios compared with the CF method that relies on sampling a diversity of response from the GCMs. Irrespective of technique used, the probability density functions of seasonal mean flow produced for four selected basins is wide indicating considerable modelling uncertainties. Such a finding has important implications for developing adaptation strategies at the catchment level in Ireland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The hydrologic impact of climate change has been largely assessed using mostly conceptual hydrologic models. This study investigates the use of distributed hydrologic model for the assessment of the climate change impact for the Spencer Creek watershed in Southern Ontario (Canada). A coupled MIKE SHE/MIKE 11 hydrologic model is developed to represent the complex hydrologic conditions in the Spencer Creek watershed, and later to simulate climate change impact using Canadian global climate model (CGCM 3·1) simulations. Owing to the coarse resolution of GCM data (daily GCM outputs), statistical downscaling techniques are used to generate higher resolution data (daily precipitation and temperature series). The modelling results show that the coupled model captured the snow storage well and also provided good simulation of evapotranspiration (ET) and groundwater recharge. The simulated streamflows are consistent with the observed flows at different sites within the catchment. Using a conservative climate change scenario, the downscaled GCM scenarios predicted an approximately 14–17% increase in the annual mean precipitation and 2–3 °C increase in annual mean maximum and minimum temperatures for the 2050s (i.e., 2046–2065). When the downscaled GCM scenarios were used in the coupled model, the model predicted a 1–5% annual decrease in snow storage for 2050s, approximately 1–10% increase in annual ET, and a 0·5–6% decrease in the annual groundwater recharge. These results are consistent with the downscaled temperature results. For future streamflows, the coupled model indicated an approximately 10–25% increase in annual streamflows for all sites, which is consistent with the predicted changes in precipitation. Overall, it is shown that distributed hydrologic modelling can provide useful information not only about future changes in streamflow but also changes in other key hydrologic processes such as snow storage, ET, and groundwater recharge, which can be particularly important depending on the climatic region of concern. The study results indicate that the coupled MIKE SHE/MIKE 11 hydrologic model could be a particularly useful tool for understanding the integrated effect of climate change in complex catchment scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to quantify climate change impact on future blue water (BW) and green water (GW) resources as well as the associated uncertainties for 4 subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional climate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and RCP8.5) were downscaled for the historical period (1976–2005) and for the future (2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%) for HIRHAM5 and RCSM under both RCPs but shows mixed trends (?8.5% to 17.3%) for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to ?0.37 °C. Driven by the downscaled climate data, future BW and GW were evaluated with hydrological models validated with streamflow and soil moisture, respectively. The results indicate that GW will increase in all the 4 investigated subbasins, whereas BW will only increase in one subbasin. The overall uncertainty associated with the evaluation of the future BW and GW was quantified through the computation of the interquartile range of the total number of model realizations (combinations of regional climate models and selected hydrological models) for each subbasin. The results show larger uncertainty for the quantification of BW than GW. To cope with the projected decrease in BW that could adversely impact the livelihoods and food security of the local population, recommendations for the development of adequate adaptation strategies are briefly discussed.  相似文献   

17.
The impact and uncertainty of climate change on the hydrology of the Mara River basin (MRB) was assessed. Sixteen global circulation models (GCMs) were evaluated, and five were selected for the assessment of future climate scenarios in the basin. Observed rainfall and temperature data for the control period (1961–1990) were combined with expected GCMs output using the delta and direct statistical downscaling methods and three greenhouse gas emission scenarios (A1B, A2 and B1). Uncertainties of climate change were addressed through compare and contrast of results across diverse GCMs, future climate scenarios and the two downscaling methods. Both methods produced a relatively similar annual rainfall amount, but their monthly and daily pattern showed considerable differences. The relative advantages and disadvantages of implementing one method over the other were also explored. The hydrologic impact of climate change in the basin was assessed using Soil and Water Assessment Tool. The model was calibrated and validated with observed data in the control period with (Nash–Sutcliff efficiency, coefficient of determination) results of (calibration: 0.68, 0.69) and (validation: 0.43, 0.44) at Mara Mines. Results have shown a statistically significant increase in flow volume of the Mara River flow at Mara Mines for the year 2046–2065 and 2081–2100. With due attention to the limitations, findings of this study have a wider application for water resources sustainability analysis in the MRB in the face of uncertainties due to climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

This study uses the Soil and Water Assessment Tool (SWAT) and downscaled climate projections from the ensemble of two global climate models (ECHAM4 and CSIRO) forced by the A1FI greenhouse-gas scenario to estimate the impact of climate change on streamflow in the White Volta and Pra river basins, Ghana. The SWAT model was calibrated for the two basins and subsequently driven by downscaled future climate projections to estimate the streamflow for the 2020s (2006–2035) and 2050s (2036–2075). Relative to the baseline, the mean annual streamflow estimated for the White Volta basin for the 2020s and 2050s showed a decrease of 22 and 50%, respectively. Similarly, the estimated streamflow for the 2020s and 2050s for the Pra basin showed a decrease of 22 and 46%, respectively. These results underscore the need to put in place appropriate adaptation measures to foster resilience to climate change in order to enhance water security within the two basins.

Citation Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y., 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58 (4), 773–788.  相似文献   

19.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

20.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号