首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bank erosion can contribute a significant portion of the sediment budget within temperate catchments, yet few catchment scale models include an explicit representation of bank erosion processes. Furthermore, representation is often simplistic resulting in an inability to capture realistic spatial and temporal variability in simulated bank erosion. In this study, the sediment component of the catchment scale model SHETRAN is developed to incorporate key factors influencing the spatio‐temporal rate of bank erosion, due to the effects of channel sinuosity and channel bank vegetation. The model is applied to the Eden catchment, north‐west England, and validated using data derived from a GIS methodology. The developed model simulates magnitudes of total catchment annual bank erosion (617–4063 t y‐1) within the range of observed values (211–4426 t yr‐1). In addition, the model provides both greater inter‐annual and spatial variability of bank eroded sediment generation when compared with the basic model, and indicates a potential 61% increase of bank eroded sediment as a result of temporal flood clustering. The approach developed within this study can be used within a number of distributed hydrologic models and has general applicability to temperate catchments, yet further development of model representation of bank erosion processes is required. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Amblève), which differ in physical settings and floodplain morphology. Two commercial, of‐the‐shelf LiDAR datasets with different specifications (horizontal resolution and vertical accuracy) were available for parts of the floodplains of both catchments. Real‐time kinematic (RTK) Global Positioning System (GPS) data were used as ground truth for error calculations. Qualitative analysis of LiDAR data allowed the identification of former channel patterns, levees, colluvial hillslope and fan deposits. These results were confirmed by field data, topographic surveys and historical maps. The pixel resolution proved to be an important factor in the identification of small landforms: only features with a width equal to or larger than LiDAR resolution can be detected. This poses limits on the usability of regionally available LiDAR data, which often have a horizontal resolution of several metres. The LiDAR data were also used in a quantitative analysis of channel dynamics. In the study area, the width of the Dijle River channel increased 3 m on average between 1969 and 2003. A sediment budget of channel processes for the period 1969–2003 indicated a total river bank erosion of 16·1 103 m3 and a total within channel deposition of 7·1 103 m3, resulting in a net river erosion of 9·0 103 m3 or c. 0·4 Mg year?1 per metre river length. Sequential LiDAR data can in theory be used to calculate vertical sedimentation rates, as long as there is control on the error of the reference levels used. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

3.
River bank erosion occurs primarily through a combination of three mechanisms: mass failure, fluvial entrainment, and subaerial weakening and weathering. Subaerial processes are often viewed as ‘preparatory’ processes, weakening the bank face prior to fluvial erosion. Within a river basin downstream process ‘domains’ occur, with subaerial processes dominating the upper reaches, fluvial erosion the middle, and mass failure the lower reaches of a river. The aim of this paper is to demonstrate that (a) subaerial processes may be underestimated as an erosive agent, and (b) process dominance has a temporal, as well as spatial, aspect. Bank erosion on the River Arrow, Warwickshire, UK, was monitored for 16 months (December 1996 to March 1998) using erosion pins. Variations in the rate and aerial extent of erosion are considered with reference to meteorological data. Throughout the first 15 months all erosion recorded was subaerial, resulting in up to 181 mm a?1 of bank retreat, compared with 13 to 27 mm a?1 reported by previous researchers. While the role of subaerial processes as ‘preparatory’ is not contended, it is suggested that such processes can also be erosive. The three bank erosion mechanisms operate at different levels of magnitude and frequency, and the River Arrow data demonstrate this. Thus the concept of process dominance has a temporal, as well as spatial aspect, particularly over the short time‐periods often used for studying processes in the field. Perception of the relative efficacy of each erosive mechanism will therefore be influenced by the temporal scale at which the bank is considered. With the advent of global climate change, both these magnitude–frequency characteristics and the consequent interaction of bank erosion mechanisms may alter. It is therefore likely that recognition of this temporal aspect of process dominance will become increasingly important to studies of bank erosion processes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Bank retreat involving a combination of fluvial erosion and bank collapse has been found to be a major contributor to sediment transport, lateral migration, and planform evolution of meandering rivers.Previous studies have largely examined the general mechanism of cantilever bank failure. However, the composite process of beam(toppling) failure caused by shear failure of the lower part composed of noncohesive soil remains poorly understood. The current paper investigates the diversity and coupli...  相似文献   

7.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The Dead Run catchment in Baltimore County, Maryland, has undergone intense urbanization since the late 1950s. Reconstruction of the channel planform from topographic maps dating back to the 1890s and aerial photographs dating back to the 1930s indicates that the channel has remained stable in planform since at least the 1930s. The relative stability of Dead Run contrasts with the alterations in channel morphology reported for other urbanizing streams in the Piedmont physiographic province of the eastern United States. Trend analyses of discharge records in Dead Run show that urban development and stormwater control measures have had significant impacts on the hydrologic response of the catchment. The flood hydraulics of the Dead Run catchment are examined for the event that occurred on 22 June 1972 in association with Hurricane Agnes. A two‐dimensional hydraulic model, TELEMAC‐2D, was used with a finite‐element mesh constructed from a combination of high‐resolution LiDAR topographic data and detailed field survey data to analyse the distribution of boundary shear stress and unit stream power along the channel and floodplain during flooding from Hurricane Agnes. The spatial and temporal distributions of these parameters, relative to channel gradient and channel/valley bottom geometry, provide valuable insights on the stability of the Dean Run channel. The stability of Dead Run's channel planform, in spite of extreme flooding and decades of urban development, is most likely linked to geological controls of channel and floodplain morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

10.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The highly stochastic nature of riverbank erosion has driven the need for spatially explicit empirical models. Detailed bank profile surveys along a meander bend of the Brandywine Creek in Pennsylvania, USA, before and after 28 high flow events over a 2·5 year period are used to develop an empirical model of cohesive bank profile erosion. Two hundred and thirty‐six bank erosion observations are classified as hydraulic erosion or subaerial erosion. Threshold conditions required to initiate bank erosion cannot be defined based on field measurements. Using the near‐bank velocity and the number of freeze–thaw cycles as predictors, regression equations are derived for hydraulic erosion that specify the length, thickness, and location on the bank face of eroded blocks. An empirical discriminant function defines the critical geometry of overhang failures, and the volumes removed by overhang failures are computed using another regression equation. All the regression equations are significant, but have low correlation coefficients, suggesting that cohesive bank erosion has a strong stochastic component. Individual events typically remove small masses of soil (average volume 0·084 m3/m) a few centimeters thick (median = 0·057 m) and a few decimeters in length (median = 0·50 m) from the lower third of the bank. Hydraulic erosion is responsible for 87% of all erosion. When applied to three survey sites not used in its development, the profile model predicts the total volume of erosion with errors of 23%, 5% and 1%. Twenty‐four percent of computed erosion volumes for single events are within 50% of observed volumes at these three sites. Extending the approach to decadal timescales and to entire bends will require three‐dimensional observations of bank failure, and spatially and temporally explicit methods to account for the influence of individual large trees on bank failures and near‐bank hydraulic processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
After wildfire, hillslope and channel erosion produce large amounts of sediment and can contribute significantly to long-term erosion rates. However, pre-erosion high-resolution topographic data (e.g. lidar) is often not available and determining specific contributions from post-fire hillslope and channel erosion is challenging. The impact of post-fire erosion on landscape evolution is demonstrated with Structure from Motion (SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without detailed pre-erosion topography and hillslope transects to improve estimates of rill erosion at adequate spatial scales. Widespread rilling and channel erosion produced a runoff-generated debris-flow following modest precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the debris-flow scour's geomorphic signature and we used a DEM of Difference (DoD) to map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% channel erosion and 25% rill erosion, reinforcing the importance of catchment size on erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior deposit volumes provide a record of Holocene fire-related debris-flows at this site; results suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale erosion (~5 mm/Ka) at this site. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
Bank retreat in the Jingjiang Reach is closely related not only to the near‐bank intensity of fluvial erosion but also to the composition and mechanical properties of bank soils. Therefore, it is necessary to correctly simulate bank retreat to determine the characteristics of fluvial processes in the Jingjiang Reach. The current version of bank stability and toe erosion model (5.4) was improved to predict riverbank retreat, by inputting a dynamic water table, and calculating the approximation of the distribution of dynamic pore water pressure in the soil near the river bank face, and considering the depositional form of the failed blocks, which is assumedly based on a triangular distribution, with the slope approximately equalling the stable submerged bank slope and half of collapsed volume deposited in the bank‐toe region. The degrees of riverbank stability at Jing34 were calculated using the improved bank stability and toe erosion model. The results indicate the following trends: (a) the degrees of riverbank stability were high during the dry season and the rising stage, which led to minimal bank failure, and (b) the stability degrees were low during the flood season and the recession stage, with the events of bank collapse occurring frequently, which belonged to a stage of intensive bank erosion. Considering the effects of bank‐toe erosion, water table lag, and the depositional form of the collapsed bank soil, the bank‐retreat process was simulated at the right riverbank of Jing34. The model‐predicted results exhibit close agreement with the measured data, including the total bank‐retreat width and the collapsed bank profile. A sensitivity analysis was conducted to determine the quantitative effects of toe erosion and water table lag on the degree of bank stability. The calculated results for toe erosion indicate that the amount of toe erosion was largest during the flood season, which was a primary reason for bank failure. The influence of water table lag on the degree of stability demonstrates that water table lag was an important cause of bank failure during the recession stage.  相似文献   

15.
In analytical and numerical models of river meandering, initiation of meandering typically occurs uniformly along the streamwise coordinate in the channel. Based on a historical analysis of the Nierskanaal, here we show how and under which circumstances meandering has initiated in isolated sections of a channel. The Nierskanaal was constructed by the end of the 18th century, as a straight channel between the river Niers and the river Meuse. The purpose of this measure was to reduce flood risk in the downstream reaches of the river Niers. The banks on the Dutch part of the channel were left unprotected and developed into a morphodynamically active channel, featuring a meandering planform and valley incision. The planform development and incision process is analysed using topographic maps and airborne LiDAR data. Meandering initiated in three sections of the channel, where the channel sinuosity developed asynchronously. Sedimentary successions in the study area show layers of iron oxide, indicating groundwater seepage from aeolian river dunes and river deposits located nearby. Only at the spots where meandering has initiated iron oxide is found close to the surface level. This provides a clue that seepage triggered bank erosion by increasing moisture content of the banks. The isolated meandering sections expanded in the longitudinal direction. Valley incision has developed in the first decades after the construction of the channel, and diminished after a gravel layer was reached. Gravel was deposited in the downstream half of the channel bed, acting as an armouring layer. The spatial variation in meandering behaviour, as observed in the Nierskanaal, justifies efforts to implement the influence of floodplain heterogeneity and the effect of seepage on bank erosion in meander models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various types of erosion processes taking place. Repeat field surveys of erosion pin plots were carried out during a 4‐year period and observations were supplemented by continuous monitoring of volumetric soil water content, soil temperature, ground water level and exposure of a PEEP sensor. Bank erosion rates (17·6–30·1 mm year?1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates exceeding 5 cm year?1 were mainly found at the lower parts of the bank and were associated with fluvial erosion. Negative erosion pin readings were widespread with a net advance of the bank during the monitoring period mainly attributed to subaerial processes and bank failure. It was found that dry periods characterized by low soil water content and freeze–thaw cycles during winter triggered bank failures. The great spatial variability, in combination with the temporal interaction of processes operating at different scales, requires new tools such as 3‐D topographical surveying to better capture bank erosion rates. An understanding of the processes governing bank erosion is required for riparian management using vegetational measures as root size and structure play different roles when it comes to controlling bank erosion processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Hydro‐geomorphological assessments are an essential component for riverine management plans. They usually require costly and time‐consuming field surveys to characterize the spatial variability of key variables such as flow depth, width, discharge, water surface slope, grain size and unit stream power throughout the river corridor. The objective of this research is to develop automated tools for hydro‐geomorphological assessments using high‐resolution LiDAR digital elevation models (DEMs). More specifically, this paper aims at developing geographic information system (GIS) tools to extract channel slope, width and discharge from 1 m‐resolution LiDAR DEMs to estimate the spatial distribution of unit stream power in two contrasted watersheds in Quebec: a small agricultural stream (Des Fèves River) and a large gravel‐bed river (Matane River). For slope, the centreline extracted from the raw LiDAR DEM was resampled at a coarser resolution using the minimum elevation value. The channel width extraction algorithm progressively increased the centerline from the raw DEM until thresholds of elevation differences and slopes were reached. Based on the comparison with over 4000 differential global positioning system (GPS) measurements of the water surface collected in a 50 km reach of the Matane River, the longitudinal profile and slope estimates extracted from the raw and resampled LiDAR DEMs were in very good agreement with the field measurements (correlation coefficients ranging from 0 · 83 to 0 · 87) and can thus be used to compute stream power. The extracted width also corresponded very well to the channel as seen from ortho‐photos, although the presence of bars in the Matane River increased the level of error in width estimates. The estimated maximum unit stream power spatial patterns corresponded well with field evidence of bank erosion, indicating that LiDAR DEMs can be used with confidence for initial hydro‐geomorphological assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Riverbank retreat along a bend of the Cecina River, Tuscany (central Italy) was monitored across a near annual cycle (autumn 2003 to summer 2004) with the aim of better understanding the factors influencing bank changes and processes at a seasonal scale. Seven flow events occurred during the period of investigation, with the largest having an estimated return period of about 1·5 years. Bank simulations were performed by linking hydrodynamic, fluvial erosion, groundwater flow and bank stability models, for the seven flow events, which are representative of the typical range of hydrographs that normally occur during an annual cycle. The simulations allowed identification of (i) the time of onset and cessation of mass failure and fluvial erosion episodes, (ii) the contributions to total bank retreat made by specific fluvial erosion and mass‐wasting processes, and (iii) the causes of retreat. The results show that the occurrence of bank erosion processes (fluvial erosion, slide failure, cantilever failure) and their relative dominance differ significantly for each event, depending on seasonal hydrological conditions and initial bank geometry. Due to the specific planimetric configuration of the study bend, which steers the core of high velocity fluid away from the bank at higher flow discharges, fluvial erosion tends to occur during particular phases of the hydrograph. As a result fluvial erosion is ineffective at higher peak discharges, and depends more on the duration of more moderate discharges. Slide failures appear to be closely related to the magnitude of peak river stages, typically occurring in close proximity to the peak phase (preferentially during the falling limb, but in some cases even before the peak), while cantilever failures more typically occur in the late phase of the flow hydrograph, when they may be induced by the cumulative effects of any fluvial erosion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The stability of a river bank depends on the balance of forces, motive and resistive, associated with the most critical mechanism of failure. Many mechanisms are possible and the likelihood of failure occurring by any particular one depends on the size, geometry and structure of the bank, the engineering properties of the bank material, the hydraulics of flow in the adjacent channel and climatic conditions. Rivers flowing through alluvial deposits often have a composite structure of cohesionless sand and gravel overlain by cohesive silt/clay. Bank erosion occurs by fluvial entrainment of material from the lower, cohesionless bank at a much higher rate than material from the upper, cohesive bank. This leads to undermining that produces cantilevers of cohesive material. Upper bank retreat takes place predominantly by the failure of these cantilevers. Three mechanisms of failure have been identified: shear, beam and tensile failure. The stability of a cantilever may be analysed using static equilibrium and beam theory, and dimensionless charts for cantilever stability constructed. Application of the charts requires only a few simple measurements of cantilever geometry and soil properties. In this analysis the effects of cracks and fissures in the soil must be taken into account. These cracks seriously weaken the soil and can invalidate a stability analysis by affecting the shape of the failure surface. Following mechanical failure, blocks of soil must be removed from the basal area by fluvial entrainment if rapid undermining and cantilever generation are to continue. Hence, the rate of bank retreat is fluvially controlled, even though the mechanism of failure of the upper bank is not directly fluvial in nature. This cycle of bank erosion: undermining, cantilever failure and fluvial scour of the toe, operates over several flood events and has important implications for river engineering, channel changes, and the movement of sediment through fluvial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号