首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

2.
The growth history of two populations of snowball garnet from the Lukmanier Pass area (central Swiss Alps) was examined through a detailed analysis of three-dimensional geometry, chemical zoning and crystallographic orientation. The first population, collected in the hinge of a chevron-type fold, shows an apparent rotation of 360°. The first 270° are characterized by spiral-shaped inclusion trails, gradual and concentric Mn zoning and a single crystallographic orientation, whereas in the last 90°, crenulated inclusion trails and secondary Mn maxima centred on distinct crystallographic garnet domains are observed. Microstructural, geochemical and textural data indicate a radical change in growth regime between the two growth sequences. In the first 270°, growth occurred under rotational non-coaxial flow, whereas in the last 90°, garnet grew under a non-rotational shortening regime. The second population, collected in the limb of the same chevron-type fold structure, is characterized by a spiral geometry that does not exceed 270° of apparent rotation. These garnet microstructures do not record any evidence for a modification of the stress field during garnet growth. Concentric Mn zoning as well as a single crystallographic orientation are observed for the entire spiral. Electron backscatter diffraction data indicate that nearly all central domains in the snowball garnet are characterized by one [001] axis oriented (sub-)parallel to the symmetry axis and by another [001] axis oriented (sub-)parallel to the orientation of the internal foliation. These features suggest that the crystallographic orientation across the garnet spiral is not random and that a relation exists among the symmetry axis, the internal foliation and the crystallographic orientation.  相似文献   

3.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

4.
Eclogite-facies rocks within the Bergen Arcs, western Norway, have formed from granulites along shear zones and fluid pathways. Garnets that were inherited from granulite facies protoliths show different types of replacement patterns due to an incomplete eclogitisation process including concentric rim zoning, zoning along vein fillings and inclusion trails, and zoning bands without inclusions. The interfacial part between the granulitic core and the eclogitic rim of garnet as well as the microstructure of other relevant minerals (omphacite, plagioclase) has been analysed using analytical transmission electron microscopy (ATEM). In garnet, the interface is characterised by gradual changes in composition from Xalm=0.31, Xpyr=0.50 to Xalm=0.54, and Xpyr=0.25 within ≈20 μm and exhibits no distinct change in microstructure. Granulitic plagioclase shows exsolution lamellae of the Bøggild intergrowth. In omphacite, anti-phase domains (APDs) which potentially record the temperature of cation ordering after mineral growth have been observed and their size suggest eclogitisation at 600–700 °C. The electron backscatter diffraction (EBSD) analysis revealed that the lattice orientation of the granulitic feldspar is basically unrelated to tectonic axes whereas newly formed eclogitic minerals omphacite and kyanite show a crystallographic relation to the foliation. In garnet, no change in the basic crystallographic orientation between the eclogitic and granulitic garnet composition was confirmed. However, misorientation analysis suggests a cellular microstructure not more than 1° misorientation in the core of the garnets, which is missing in the eclogitic rim indicating textural equilibration of the latter. The heterogeneous replacement patterns are characteristic for dissolution and re-precipitation reactions in an open system limited to fluid availability. The appearance of the compositional profile in garnet is interpreted as a diffusional re-equilibration step after the time-limited, fluid-mediated eclogitisation event that apparently obscured the initially sharp interface within the further retrograde metamorphic history.  相似文献   

5.
Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km sу) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.  相似文献   

6.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   

7.
The lattice preferred orientation (LPO) of an anorthosite (composed of andesine) sampled from a highly deformed anorthositic mylonite (Grenville Province, Quebec) was measured by TOF neutron diffraction and SEM-EBSD. The quantitative texture analysis of neutron data was accomplished by using the Rietveld texture analysis with the WIMV algorithm, implemented in the program package Materials Analysis Using Diffraction (MAUD). The texture calculations of the EBSD data were performed by using the program BEARTEX. Analyses from neutron and electron diffraction data gave similar results if EBSD data are smoothed to account for grain statistics. The principal pole figures show (010) roughly parallel to the rock foliation, (001) poles exhibiting a low angle (25°) to the pole to foliation, and (100) poles close to the Y-direction (perpendicular to the lineation and foliation pole). The [100] crystallographic direction shows a maximum in the lineation direction, [010] directions concentrate near the foliation pole. The geological deformation conditions and the constructed pole figure patterns indicate that the preferred orientation could be attributed to intracrystalline slip dominantly on (010) with [100] as slip direction. Elastic properties, calculated by averaging, document weak anisotropy that has implications for the seismic structure of the lower crust.  相似文献   

8.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

9.
Atoll-shaped and normal garnets from schists of the Betic Cordillera (Spain) were studied by electron microprobe, scanning electron microscopy and microstructural electron backscattered scanning diffraction (EBSD). Medium-grade schists contain a textural variety of atoll garnets, characterized by the presence of muscovite, annite, and quartz as main ??core?? phases. Zoning patterns, EBSD analyses and themobarometric data indicate that the micaceous intergrowths formed in most cases through breakdown of a first garnet generation, with orientation of micas being controlled by garnet (c*mica//[111]*Grt and c*mica//[110]*Grt as main crystallographic relationships). Rings formed from multiple nucleation and coalescence, with orientation being controlled, in some cases, by the relics of the initial garnet and more generally by mica orientation. P-T estimates indicate that the first stage of garnet growth occurred at relatively high P (9?C12?kbar/500?C550°C) whereas the second metamorphic stage occurred at lower P and slightly higher T conditions (5?C7?kbar/500?C600°C).  相似文献   

10.
Garnet growth in high‐pressure, mafic garnet granulites formed by dehydration melting of hornblende‐gabbronorite protoliths in the Jijal complex (Kohistan palaeo‐island arc complex, north Pakistan) was investigated through a microstructural EBSD‐SEM and HRTEM study. Composite samples preserve a sharp transition in which the low‐pressure precursor is replaced by garnet through a millimetre‐sized reaction front. A magmatic foliation in the gabbronorite is defined by mafic‐rich layering, with an associated magmatic lineation defined by the shape‐preferred orientation (SPO) of mafic clusters composed of orthopyroxene (Opx), clinopyroxene (Cpx), amphibole (Amp) and oxides. The shape of the reaction front is convoluted and oblique to the magmatic layering. Opx, Amp and, to a lesser extent, Cpx show a strong lattice‐preferred orientation (LPO) characterized by an alignment of [001] axes parallel to the magmatic lineation in the precursor hornblende‐gabbronorite. Product garnet (Grt) also displays a strong LPO. Two of the four 〈111〉 axes are within the magmatic foliation plane and the density maximum is subparallel to the precursor magmatic lineation. The crystallographic relationship 〈111〉Grt // [001]Opx,Cpx,Amp deduced from the LPO was confirmed by TEM observations. The sharp and discontinuous modal and compositional variations observed at the reaction front attest to the kinetic inhibition of prograde solid‐state reactions predicted by equilibrium‐phase diagrams. The PT field for the equilibration of Jijal garnet granulites shows that the reaction affinities are 5–10 kJ mol.?1 for the Grt‐in reaction and 0–5 kJ mol.?1 for the Opx‐out reaction. Petrographic and textural observations indicate that garnet first nucleated on amphibole at the rims of mafic clusters; this topotactic replacement resulted in a strong LPO of garnet. Once the amphibole was consumed in the reaction, the parallelism of [001] axes of the mafic‐phase reactants favoured the growth of garnet crystals with similar orientations over a pyroxene substrate. These aggregates eventually sintered into single‐crystal garnet. In the absence of deformation, the orientation of mafic precursor phases conditioned the nucleation site and the crystallographic orientation of garnet because of topotaxial transformation reactions and homoepitaxial growth of garnet during the formation of high‐pressure, mafic garnet‐granulite after low‐pressure mafic protoliths.  相似文献   

11.
雅鲁藏布江缝合带米林地区的石英片岩糜棱岩化强烈,线理及面理构造发育。S-C组构、"σ"残斑以及不对称褶皱等指示了上盘相对下盘向NW下滑的剪切运动趋势。电子背散射衍射(EBSD)测试结果表明:雪球状石榴子石变斑晶边部面理(S2)中石英包裹体晶格优选方位模式图指示的运动指向与石英岩基质面理(或外部面理;S3)中石英包裹体晶格优选方位模式图指示的运动指向一致,都是上盘向NW正滑。然而,雪球状石榴子石的核部(S1)石英包裹体优选方位(LPO)模式图指示相反运动指向。能量色散显微分析(EDS)测试结果表明石榴子石的成分环带显示连续生长环带特征。连接石榴子石核部面理(S1)可以恢复得到石英岩早期不对称褶皱形状的面理轨迹。这些说明文章样品中雪球状石榴子石变斑晶是生长在不对称褶皱之上的。此过程主要是剪切方向发生了旋转,而不是石榴子石自身旋转。这种雪球状石榴子石变斑晶的存在说明南迦巴瓦地区雅鲁藏布江缝合带西侧岩石最初经历向SE的逆冲作用,后期经历由SE向NW的拆离滑脱事件。  相似文献   

12.
Two types of garnet porphyroblast occur in the Schneeberg Complex of the Italian Alps. Type 1 porphyroblasts form ellipsoidal pods with a centre consisting of unstrained quartz, decussate mica and small garnet grains, and a margin containing large garnet grains. Orientation contrast imaging using the scanning electron microscope shows that the larger marginal garnet grains comprise a number of orientation subdomains. Individual garnet grains without subdomains are small (< 50 µm), faceted and idioblastic, and have simple zoning profiles with Ca‐rich cores and Ca‐poor rims. Subdomains of larger garnet grains are similar in size to the individual, small garnet grains. Type 2 porphyroblasts comprise only ellipsoidal garnet, with small subdomains in the centre and larger subdomains at the margin. Each subdomain has its own Ca high, Ca dropping towards subdomain boundaries. Garnet grains, with or without subdomains, all have the same Ca‐poor composition at rims in contact with other minerals. The compositional zonation patterns are best explained by simultaneous, multiple nucleation, followed by growth and amalgamation of individual garnet grains. The range of individual garnet and garnet subdomain sizes can be explained by a faster growth rate at the porphyroblast margin than in the centre. The difference between Type 1 and Type 2 porphyroblasts is probably related to the growth rate differential across the porphyroblast. Electron backscatter diffraction shows that small, individual garnet grains are randomly oriented. Large marginal garnet grains and subdomain‐bearing garnet grains have a strong preferred orientation, clustering around a single garnet orientation. Misorientations across subdomain boundaries are small and misorientation axes are randomly oriented with respect to crystallographic orientations. The only explanation that fits the observational data is that individual garnet grains rotated towards coincident orientations once they came into contact with each other. This process was driven by the reduction of subdomain boundary energy associated with misorientation loss. Rotation of garnet grains was accommodated by diffusion in the subdomain boundary and diffusional creep and rigid body rotation of other minerals (quartz and mica) around the garnet. An analytical model, in which the kinetics of garnet rotation are controlled by the rheology of surrounding quartz, suggests that, at the conditions of metamorphism, the rotation required to give a strong preferred orientation can occur on a similar time‐scale to that of porphyroblast growth.  相似文献   

13.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   

14.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

15.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   

16.
The petrological significance of misorientations between grains   总被引:4,自引:1,他引:4  
Misorientation analysis quantifies microstructural features in tectonites, metamorphic and igneous rocks, and allows hypotheses on their formation to be tested. The misorientation between two lattices can be expressed by a rotation axis and rotation angle. For lattices with symmetry, it is conventional to take the minimum angle that enables one lattice to be rotated into the other. For a group of lattice measurements two types of misorientation distribution can be calculated. Selecting random pairs of grains gives the random-pair misorientation distribution. Selecting neighbouring pairs gives the neighbour-pair misorientation distribution. The forms of both distributions are visualised using histograms or cumulative frequency diagrams. They are strongly influenced by any overall crystallographic preferred orientation and by intrinsic crystal symmetry. In many rocks, the random-pair misorientation distribution and neighbour-pair misorientation distribution are statistically significantly different (quantified using the Kolmogorov-Smirnov test). Differences between the random-pair misorientation distribution and neighbour-pair misorientation distribution imply that adjacent grains have physically interacted or are inherited from a precursor microstructure. Interactions include (1) reduction in surface energy by lattice alignment. We show this may have occurred in garnet clusters in schist, and olivine in a cumulate. It is well-known in metals and may be a common geological process. (2) Nucleation, where those nuclei have influenced the orientation of adjacent nuclei. (3) Mechanical rotations of facetted grains in compacting crystal mushes, so that faces become parallel. (4) Growth twinning. Inheritance includes (1) subgrain rotation recrystallisation in tectonites deforming by crystal plastic processes. (2) Mechanical and transformation-related twinning. (3) Domainal microstructures, e.g. where grains have formed from a few large original grains, may give rise to spurious correlations when the orientation data cover more than one domain. With this proviso, misorientation analysis can be used to investigate many important microstructural processes.  相似文献   

17.
The Espinho Branco anatexite, located within a transcurrent, high-temperature shear zone in NE Brazil, was the subject of a comprehensive petrostructural study (Anisotropy of Magnetic Susceptibility – AMS, Anisotropy of Anhysteretic Remanence – AAR, Electron Backscatter Diffraction – EBSD) to evaluate the compatibility of different fabrics with the kinematics of melt deformation. Magnetite dominates susceptibilities larger than 1 mSI and biotite displays [001] lattice directions consistent with AMS k3 axes. In contrast, migmatites with a susceptibility lower than 0.5 mSI and no visible mesoscopic foliation provide crystallographic fabrics distinct from AMS and AAR. However, AAR remains consistent with the regional strain field. These results suggest that the correlation of field, AMS and crystallographic fabrics is not always straightforward despite the relatively simple organisation of the magnetic fabric in the anatexite. We conclude that AMS recorded the final stages of the strain field in the migmatite irrespective of its complex mesoscale structures and contrasting crystallographic fabrics.  相似文献   

18.
In low grade, biotite-rich metasiltstones and slates from the western side of Fleurieu Peninsula, the slaty cleavage is defined by elongate deformed old biotites and by the coincident elongate dimensions and (001) planes of thin, well aligned new biotites. Histograms of frequency versus (001)-S1 angle (S1 defined by aligned thin muscovite used as the reference plane) were determined in thin section for both populations. The old biotites show a symmetrical bimodal distribution of (001) about S1, with maxima at around 20° either side ofS1. This distribution, together with the preserved intracrystalline strain, indicates that these old grains deformed largely by slip on (001) with some modification of grain boundaries by diffusive transfer. The new biotite grains are very well aligned (standard deviation 3.8°) and show no sign of mechanical deformation. They have not been mechanically rotated into alignment but must have nucleated and grown in a specific orientation. The proportion of new to old grains increases with metamorphic grade, causing a rapid strengthening of the crystallographic alignment. In slates and phyllites with similar microstructure, the mica fabric determined by X-ray texture goniometry cannot be used as a quantitative measure of the geometry and magnitude of the bulk strain, as the intensity of the crystallographic fabric will be strongly influenced by the proportion of new mica, which is itself greatly affected by the metamorphic grade during slaty cleavage formation.  相似文献   

19.
Lattice-preferred orientations (LPO) of olivine, diopside, enstatite and garnet from the Zhimafang garnet peridotite body in the Sulu ultrahigh-pressure (UHP) metamorphic terrane (China) were measured using the electron backscatter diffraction (EBSD) technique. The peridotite was captured from a mantle wedge immediately adjacent the subducted Yangtze slab and then experienced the UHP metamorphism at 750–950 °C and 4–7 GPa. The olivine LPO is characterized by the [001] axis close to the stretching lineation and the (100) plane subparallel to the foliation, indicating the prevailing of (100) [001] slip. Enstatite LPO displays the dominance of (100) [001] slip. Diopside developed complex LPO patterns that are difficult to explain using a single slip system of (100) [001]. Garnet is almost randomly oriented due to its low volume fractions, cubic symmetry and the presence of numerous slip systems. Calculated seismic properties of the peridotite yield a maximum P-wave velocity normal to the foliation and a minimum along the foliation, with anisotropy up to 8% in strongly sheared samples. The S-wave velocity pattern is complex but the fast polarization plane generally normal to the foliation. The inferred shear sense from the olivine LPO is top-to-SE, in contrary to exhumation-induced top-to-NW thrusting recorded in the quartz LPO, implying that the olivine LPO formed at early UHP metamorphic conditions. The olivine crystals have relatively low water contents (141–475 H/106 Si), indicating a fluid-deficient environment for the LPO formation. The present study suggests that a combination of low temperature and UHP plays a much more important role than the water content to promote the activation of (100) [001] slip in olivine.  相似文献   

20.
An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号