首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异   总被引:1,自引:0,他引:1  
秦岭位于暖温带与亚热带交界处,也是中国南北地理分界线,秦岭南北坡植被对干湿变化响应敏感性,可以折射出暖温带、亚热带地区主要植被类型对干湿变化的响应规律和机制特征,对深入理解不同气候带植被变化规律具有重要意义。本文利用秦岭山地32个气象站点的气象数据和MODIS NDVI时间序列数据集,探讨了2000—2018年秦岭南北坡NDVI和SPEI时空变化特征,揭示了南北坡植被对干湿变化响应敏感性及其空间差异。结果表明:① 2000—2018年秦岭植被覆盖情况整体显著改善,但秦岭南坡NDVI上升幅度和面积占比均高于北坡,南坡植被比北坡改善情况好。秦岭湿润化趋势不显著,但秦岭北坡湿润化速率和面积占比均大于南坡。② 秦岭北坡植被比南坡植被更易受干湿变化影响,秦岭北坡植被对3—6月总体干湿变化最为敏感,南坡植被对3—5月(春季)干湿变化最为敏感。秦岭南北坡植被主要受3~7个月尺度干湿变化影响,对11~12个月尺度的干湿变化响应较弱。③ 秦岭有90.34%的区域NDVI与SPEI呈正相关,大部分地区春季湿润化能促进全年植被生长;随海拔上升,植被对干湿变化响应敏感性先上升再下降,海拔800~1200 m是植被响应最敏感的海拔段,海拔1200~3000 m随海拔上升植被响应敏感性下降;南北坡草丛均是对干湿变化响应最为敏感的植被类型,但秦岭北坡多数植被类型对干湿变化响应比南坡敏感。  相似文献   

2.
豫西山地植被NDVI及其气候响应的多维变化   总被引:3,自引:1,他引:2  
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在1100 m海拔区恢复概率最高,在1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

3.
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在<1100 m海拔区恢复概率最高,在>1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

4.
刘梁美子  占车生  胡实  董宇轩 《地理研究》2018,37(12):2433-2446
为科学认识喀斯特山区植被变化及其地形效应,基于MODIS NDVI数据,采用统计学方法,系统分析2000-2016年喀斯特山区植被变化的时空特征及其与海拔、地形起伏度、坡度、坡向的关系。研究表明,黔桂喀斯特山区植被绿度中部高,西北及东南较低,年均NDVI随海拔和地形起伏度的增加呈单峰曲线变化,峰值位于400~600 m,NDVI随坡度和坡向的变化不明显;2000-2016年大部分地区NDVI呈增长趋势,其中超过20%的地区呈显著增长(P<0.05),年均增长率约0.0018。西部和东南部绿化趋势最为显著,仅在东北和中东部,NDVI呈下降趋势;NDVI呈增长趋势的比例随海拔的增加而增加,说明该喀斯特山区近年来植被恢复向着良性化方向发展,高海拔植被恢复速率更快,低海拔缓坡处的植被生态建设需要进一步加强。  相似文献   

5.
珠穆朗玛峰国家自然保护区南北坡植被覆盖变化   总被引:3,自引:1,他引:2  
利用2000-2009年MODIS NDVI数据,基于每个像元的生长季NDVI峰值进行了像元水平的线性趋势分析,研究珠穆朗玛峰自然保护区南坡和北坡的植被覆盖的空间分布和变化特征.结果表明:①保护区内植被覆盖显著改善区域和轻微改善区域NDVI-Max的年平均增加率分别为3.06%和1.25%;显著退化区域和轻微退化区域NDVI-Max的年平均减少率分别为2.82%和1.09%a 22000-2009年,保护区南坡的植被覆盖整体上呈现上升趋势,22.59%的区域显著改善,19.05%的区域轻微改善,24.75%的区域保持稳定;北坡的植被覆盖整体上呈现下降趋势,19.5%的区域严重退化,24.43%的区域轻微退化,38.12%的区域保持稳定.③南坡有植被覆盖的8种土地利用类型中,山区旱地植被覆盖呈现退化趋势,其余土地利用类型都呈现上升趋势;北坡有植被覆盖的10种土地利用类型中,植被覆盖都呈现退化趋势.  相似文献   

6.
秦岭太白山气温直减率时空差异性研究   总被引:12,自引:3,他引:9  
在评估山地生态系统对气候变化响应的过程中,作为气温要素的重要输入参数,气温直减率(γ)的精确性直接影响到相关科研工作的真实性和可靠性。本文基于秦岭主峰太白山(3771.2 m)11个分布于南北坡和不同海拔的标准气象站点2013-2015年连续3年实测日均温资料和25 m×25 m空间分辨率的DEM数据,研究了太白山气温直减率在不同时间尺度上的变化规律及不同坡向上的空间分布特征。结果表明:① 2013-2015年太白山年均γ北坡均大于南坡,北坡为0.513 ℃/100m,南坡为0.499 ℃/100m;北坡年均γ随海拔变化表现出一定的差异性,而南坡相对稳定。② 年内γ在不同时间尺度上均存在明显差异,且南北坡变化趋势不一致。在季尺度上,γ最大值北坡为夏季,为0.619 ℃/100m,而南坡最大出现在春季,为0.546 ℃/100m,最小值均为冬季,南北坡分别为0.449 ℃/100m和0.390 ℃/100m;春季和夏季,北坡γ均大于南坡,而冬季相反,北坡小于南坡,秋季几乎无差异。在月尺度上,气温相对高的月份γ亦较高,北坡γ变化幅度大于南坡;年始和年末(11-12月、1-2月)北坡γ小于南坡,而5-9月北坡大于南坡,且南北坡γ相差较大。③ 经数据可信度分析,所获得的γ可较为客观地反映太白山气温随海拔变化的规律性,将为山地气温空间分布规律及其生态系统响应等定量研究提供理论基础。  相似文献   

7.
基于太白山内2013—2014年气象站点实测数据和DEM分析太白山南北坡不同时间尺度的气温直减率,并利用辐射传输方程法针对Landsat 8影像数据反演地表温度场,通过窗口差分法推导太白山气温直减率场及其特征。研究表明:1实测法计算太白山年均气温直减率北坡为0.515℃/(100 m),南坡为0.505℃/(100 m);10月直减率北坡为0.505℃/(100 m),南坡为0.480℃/(100 m);春、夏季气温直减率较大,北坡大于南坡,而冬季较小,北坡小于南坡。2采用辐射传输方程法针对Landsat 8 TIRS 10反演地表温度具有较高置信度,获取10月北坡气温直减率为0.611℃/(100 m),南坡为0.502℃/(100 m)。3气温直减率在山脊和山谷附近表现出高直减率条带;海拔对太白山气温直减率的影响高于坡向,高、中、低海拔区气温直减率分别为0.913℃/(100 m)、0.471℃/(100m)、0.755℃/(100 m);坡向对气温直减率分布的影响表现为随阳坡至阴坡而逐渐变大,依次为0.515℃/(100m)、0.541℃/(100 m)、0.617℃/(100 m)。  相似文献   

8.
艾比湖流域NDVI垂直梯度变化特征   总被引:2,自引:0,他引:2  
利用2000—2011年MODIS-NDVI数据分析了艾比湖流域植被变化特征,以MVC法合成年最大NDVI,研究不同尺度下海拔与NDVI的关系。建立了12年的NDVI变化趋势的一元线性回归方程,结合DEM数据,分析了24等分下海拔间的NDVI变化趋势。结果显示:(1)总体上,NDVI与海拔的拟合程度较好,判定系数均大于0.88,随着等分数目减少,判定系数增大,10等分时,海拔与NDVI的相关性最大,为0.97;2 500m为NDVI的分水岭,该海拔以下区域植被覆盖逐渐增加,以上区域植被覆盖逐渐减少;(2)研究区12年NDVI趋势变化平均值为1.03,总体属轻度改善;1 500m以上区域植被呈减少态势,1 200m以下植被呈增长态势;(3)各海拔带内NDVI趋势平均值为-42~54,研究区大部分像元NDVI趋势值较小,植被覆盖情况属于轻度改善和轻度退化。  相似文献   

9.
利用实测的念青唐古拉山脉南坡海拔4800 m和5333 m,以及北坡5400 m的土壤温、湿度和地表气温一年的数据,对该地区水热特征作了初步分析,结果表明:地、气温差冬季大夏季小,且相对邻近地区偏大。同时地温与气温有良好相关,但随深度增加,相关系数减小。土壤热力梯度的方向低海拔由下而上,高海拔则相反。土壤湿度高海拔略大于低海拔,干季和湿季分别受冻融过程和印度洋季风降水影响。高海拔冻结期比低海拔长3~4个月,其下层土壤湿度在冻融交替期表现一个剧烈的跃变现象。念青唐古拉山南、北坡海拔相近区域相同层位土壤温度差异在0~8℃之间。南坡土壤温度年平均高于北坡3~4℃。南坡冻结比北坡晚而融化比北坡早,上层土壤湿度南坡小于北坡,而下层土壤湿度南坡大于北坡,南北坡水热过程存在明显差异。  相似文献   

10.
长白山区植被生长季NDVI时空变化及其对气候因子敏感性   总被引:7,自引:1,他引:6  
本文利用长白山区SPOT/VGT NDVI 数据和气象数据,分析该区不同植被类型NDVI时空变化特征以及与气候因子的相关关系,并探讨了植被对气候变化响应的滞后性。结果表明:①2000-2009 年,长白山区植被NDVI 逐年变化总体呈增长趋势,增长区域的面积占全区面积的83.91%,在空间上主要集中在北坡和西坡,NDVI减少区域集中在南坡;②NDVI变化率随季节和植被类型变化而不同,NDVI增长主要集中在5 月和9 月,而7 月NDVI变化较小,甚至出现下降趋势;③植被NDVI与温度和降水存在着显著的正相关性(p<0.01),且NDVI与温度的相关性高于与降水的相关性,且随海拔升高,NDVI与温度相关性增强;④NDVI对气温和降水变化的响应存在滞后期, 不同植被类型,滞后期存在差异。苔原NDVI对温度和降水响应的滞后期大约10 天,而针阔混交林和针叶林NDVI 对温度和降水响应的滞后期约为20 天。  相似文献   

11.
黄土高原不同生态类型NDVI时空变化及其对气候变化响应   总被引:1,自引:0,他引:1  
孙锐  陈少辉  苏红波 《地理研究》2020,39(5):1200-1214
了解植被的时空变化及其气候主控因子可为植被保护和恢复提供重要的理论依据。基于MOD13A1和气象数据,分析了黄土高原Normalized Difference Vegetation Index (NDVI)时空变化特征,探讨了NDVI对水热条件在不同时间尺度的响应特征。结果表明:黄土高原植被覆盖状态正在不断的改善,气候呈暖湿的发展趋势;83.77%的植被退化区(退化区面积占研究区总面积的5.79%)海拔<2000 m且退化类型以不显著减少为主,不同覆被类型的退化区海拔分布及退化比例差异明显,湿地的退化面积比最高(23.91%)、其次耕地(11.88%)。年尺度上,NDVI与降水呈正相关的面积高于气温,约75.06%的区域受水分条件控制;灌木地(海拔分布<2200 m)、耕地(<3000 m)、草地(<3000 m)和裸地(600~3700 m)等植被生长受水分条件影响;森林(<1000 m、1700~3700 m)和湿地(>2500 m)的植被生长受热量影响。月尺度上,黄土高原植被NDVI对热量响应以滞后1个月为主,不同植被对水热响应的滞后性差异明显,草地、湿地、耕地和裸地对热量响应以滞后1个月为主;森林和灌木地则表现水热同期的特征。伴随滞后时间的推移,水分主控面积逐渐降低,热量成为影响植被生长的主要因素,水热主控及响应滞后性分布受海拔影响明显。  相似文献   

12.
珠穆朗玛峰自然保护区植被变化分析   总被引:9,自引:2,他引:7  
利用1981~2001 年美国NASA Pathfinder NOAA/NDVI 数据, 以1∶100 万植被图为基础, 结 合气温降水资料、DEM数据和2000 年人口空间化数据, 研究了珠穆朗玛峰自然保护区植被变化 空间格局和海拔梯度特征及其影响因素。结果表明: ①1981~2001 年珠峰自然保护区植被变化以 稳定为主, 有5.09%的区域发生严重退化, 13.34%的区域发生退化, 54.31%的区域保持稳定, 26.31%的区域变好以及0.95%的区域植被显著变好。退化和严重退化区域主要分布在保护区南 部, 国境沿线; 植被变好地区集中分布在保护区北部, 雅鲁藏布江南岸。稳定区域位于退化区域和 变好区域之间。植被退化区域主要分布在海拔2400m ~ 4000m 带上。②针叶林、针阔混交林和灌 丛构成了区域植被退化的主体。③从空间上看, 主要是气温变化对植被变化有影响。在海拔梯度 上, 气温变化和坡度共同影响植被变化。④在珠峰自然保护区内, 人类不合理的资源利用方式造 成了部分地区的植被退化。  相似文献   

13.
利用两种卫星影像合成并引入冰川积雪区的方法,对西昆仑山玉龙喀什河流域2000-2013 年MOD10A2积雪数据进行去云处理,分析不同海拔高度积雪的年内和年际变化特征及趋势,结合气象要素,分析其分布变化原因。结果表明:① 低山区(1650-4000 m)积雪年内变化为单峰型,补给期为冬季,而高山区(4000~6000 m)存在“平缓型”春季补给期和“尖峰型”秋季补给期两个峰值;② 就年际变化而言,低、高山区平均、最大积雪面积呈微弱增加趋势,高山区最小积雪面积显著增加,倾向率为65.877 km2/a;③ 就季节变化而言,春、夏、冬三季低、高山区积雪面积年际变化呈“增加—减少—增加”趋势,秋季高山区积雪面积则呈“增加—减少”趋势,而低山区积雪面积在2009 和2010 年异常偏大,其他年份面积变化不大;④ 在低山区,气温是影响春、夏两季积雪面积变化的主因,气温和降水对秋季积雪面积变化的影响相当,而冬季积雪面积变化对降水更敏感;在高山区,夏季积雪面积变化对气温更敏感,而冬、春季积雪面积变化主要受降水影响。  相似文献   

14.
雅鲁藏布江流域海拔高差约达7 000 m,气候条件复杂、生态系统类型多样,植被格局空间变化显著.笔者基于1:100万植被类型图、SPOT_VEGETATION NDVI数据集和数字高程模型(DEM),综合运用GIS空间分析技术,提取与定量分析了流域主要植被类型、空间分布特征,并结合海拔梯度、气候条件变化探讨了流域植被格局与NDVI空间变化的耦合关系.结果表明:(1) 雅鲁藏布江流域植被类型包括针叶林、阔叶林、灌丛、荒漠、草原、草丛、草甸、高山植被等11个植被型组,21个植被型,其中米林宽谷的植被型最多,自下游至上游的山南宽谷、日喀则宽谷及马泉河宽谷随着海拔梯度的变化,植被类型多样性总体呈下降趋势.(2) 随着海拔的增加,植被型组和植被型的个数均呈先增大后减小的趋势,以海拔3000~4 000 m和4 000~5 000 m最多,流域植被格局的垂直地带性显著.(3) 流域植被格局与NDVI变化表现出较好的空间一致性.针叶林、阔叶林和草丛等3个植被型组的NDVI值均以10-12月最大,其余8个植被型组的NDVI值均以7-9月最大、1-3月最小.海拔3 000 m是流域尺度植被格局变化的一个转折点.  相似文献   

15.
胡实  韩建  占车生  刘梁美子 《地理研究》2020,39(7):1680-1690
高时空分辨率降雨数据的获取对陆地水循环研究至关重要。遥感卫星反演降水产品虽然能有效再现降雨的空间格局,但存在空间分辨率较低的问题。以植被指数NDVI(Normalized Difference Vegetation Index)和海拔高度为自变量,通过构建太行山区GPM降水(Global Precipitation Measurement Mission)的时滞地理加权回归模型,得到了2014—2016年研究区1 km分辨率GPM降水数据。研究结果表明:利用植被指数和海拔高度构建的时滞地理加权回归模型能够有效地对太行山月尺度GPM降雨数据进行尺度下延,在提高GPM数据空间分辨率的同时保留了原始数据的观测精度。考虑NDVI的时滞性提高了地理加权回归模型的降尺度效果,相对于多元线性回归模型和不考虑NDVI时滞效应的地理加权回归模型,时滞地理加权回归模型的降尺度结果与站点实测数据的确定性系数更高,RMSE更低。冬季降雨与第二年春季植被NDVI的关系较为密切,虽然采用第二年春季的NDVI作为解释变量构建降尺度模型能有效地提高冬季降雨的降尺度效果,但基于植被指数和海拔高度构建的时滞地理加权回归模型更加适用于植被生长季GPM降雨数据的降尺度研究。  相似文献   

16.
青藏高原植被NDVI对气候因子响应的格兰杰效应分析   总被引:3,自引:1,他引:3  
多变的气候和复杂的地理环境使得青藏高原植被对气候变化响应敏感,因此分析高原植被与气候因子之间的动态关系对气候变化研究和生态系统管理具有重要意义。论文基于1982—2012年青藏高原气象数据(气温、降水)以及GIMMS NDVI3g遥感数据,在像素级别上运用格兰杰因果关系检验方法,在月尺度和季节尺度上分析了高原植被NDVI(主要是草原)与平均气温、降水量之间的响应情况及因果关系。研究表明:① 月尺度上NDVI与平均气温之间、NDVI与降水量之间的时序平稳性比例高于季节尺度,月尺度下达到平稳性的植被区域分别占99.13%和98.68%,季节尺度下分别占64.01%和71.97%;② 月尺度下高原平均气温和降水量对NDVI影响的滞后期都集中在第12~13个月,荒漠草原、典型草原和草甸3种植被类型的滞后期一致,季节尺度下平均气温和降水量对NDVI影响的滞后期主要分布在第3~4和第6个季度,3种植被类型的滞后期差异性较大;③ 月尺度下,青藏高原约98.95%的植被覆被区的平均气温是引起NDVI变化的格兰杰原因,反之,大部分地区(约89.05%,除高原东南区域)内NDVI也是引起平均气温变化的格兰杰原因;季节尺度下,青藏高原中部以外植被区域(约92.03%)内的平均气温是引起NDVI变化的格兰杰原因,而在东部和西部部分地区(约50.55%)中NDVI也是引起平均气温变化的格兰杰原因;④ 月尺度下,高原东北和西北地区(约72.05%)内的降水量是引起NDVI变化的格兰杰原因,大部分地区(约94.86%,除东南部少量区域)中NDVI是引起降水量变化的格兰杰原因;季节尺度下,高原东南部(约61.43%)地区内的降水量是引起NDVI变化的格兰杰原因,高原中东部地区(约48.98%)中NDVI是引起降水量变化的格兰杰原因。总之,高原植被NDVI与气温、降水的相互作用显著,彼此均可构成格兰杰因果效应,但总体上气候因子的影响程度大于植被的反馈作用,月尺度的效应区域大于季节尺度的效应区域。  相似文献   

17.
基于DEM-NDVI的高山植被带定量刻划   总被引:2,自引:2,他引:0  
常纯  王心源  杨瑞霞  刘传胜  骆磊  甄静  项波  宋经纬  廖颖 《地理研究》2015,34(11):2113-2123
根据不同高山植被类型具有不同归一化植被指数响应的特点,通过对NDVI的分析来定量刻划高山植被带的海拔分布。首先,利用DEM、NDVI构建DEM-NDVI散点分布图;然后,结合地面调查资料与WorldView-2高分遥感影像对DEM-NDVI散点分布图进行统计回归分析;最后,利用分析结果定量刻划高山植被垂直分带结构。将该方法应用于四川卧龙大熊猫保护区的卧龙关沟,结果表明:① NDVI随海拔升高而呈“Z”字形变化;② DEM-NDVI散点图比样本点DEM-NDVI分布图能更完全地表达高山植被NDVI随高程变化的特征;③ 卧龙关沟东北坡高山植被带海拔高度为3255~4415 m,西南坡高山植被带海拔高度为3193~4473 m,与地面调查得到的区域代表植被的分布高度基本一致。  相似文献   

18.
In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号