首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Large (> 100 km) meteorite impact cratering events play important roles in surface and biosphere evolution, however, their potential for widespread ductile modification of the lithosphere has been difficult to assess, due partly to our inability to isotopically age-correlate deep mineral fabrics with surface records. We have integrated benchmark U–Pb zircon dating methods (ID-TIMS, SHRIMP) with new microstructural techniques (EBSD, µXRD) to demonstrate that crystal–plastic deformation can cause rapid out-diffusion of radiogenic Pb and accompanying trace element alteration in crystalline zircon. We have used this phenomenon to directly date fabric in Archean zircons and xenoliths of the lower crust of South Africa at 2023 ± 15 million years, coeval with the 2020 ± 3 million year old Vredefort cratering event at surface, with extent ≥ 20,000 km2. Our findings indicate that regional exogenic fabrics, similar to high-temperature tectonic fabrics, exist in ancient crust. Moreover, our results establish that crystal-plastic deformation in the lithosphere can now be directly dated and linked to planetary evolution by zircon U–Pb strain chronometry.  相似文献   

2.
The geochronology of cave deposits in the Cradle of Humankind UNESCO World Heritage Site in South Africa provides a timeframe essential for the interpretation of its fossils. The uranium-lead (U–Pb) and uranium-thorium disequilibrium (U/Th) dating of speleothems, mostly flowstones that underlie and blanket the fossil-bearing sediments, have been effective in this sense, but U–Pb is limited by the requirement of ∼1 ppm U concentrations and low common Pb contents, and U/Th has a c. 500 ka limit of applicability. Here we report age results for calcite-aragonite speleothems obtained using a new combined uranium-thorium-helium ((U,Th)–He) and U/Th dating routine. We reproduced within analytical uncertainty, the published U–Pb or U/Th ages for (a) flowstone in three drill core samples in the range 2000–3000 ka, (b) a flowstone hand sample taken at surface with an age of 1800 ka, and (c) five underground flowstone samples in the range 100–800 ka. Calcite retentivity for He under cave conditions is thus demonstrated. In the few cases where helium loss was observed in speleothems, only some of the subsamples were affected, and to varying degrees, suggesting loss by lattice damage not related to diagenetic processes, rather than volume diffusion. In the 100 to 800 ka range, the combined U/Th disequilibrium and (U,Th)–He method also yielded reliable values for initial (230Th/238U) and (234U/238U) activity ratios. Importantly, most subsamples had high initial (230Th/238U) values, ranging from 1.0 to 19.7, although having low Th/U ratios. This is probably due to incorporation of Fe–Mn oxides-hydroxides dust, on which 230Th was previously adsorbed. Such samples are mostly not dateable by U/Th without the additional input from the He analysis. If not detected and corrected for, such high initial (230Th/238U) values can lead to inaccurate U/Th and U–Pb ages. Our study shows that the incorporation of He analysis in U/Th dating has broad potential application, with four methods for calculating the ages, in carbonates from different environments where U-Pb or U/Th dating would not work.  相似文献   

3.
Speleothems are found in association with hominin fossil-bearing cave deposits in South Africa and can be used to provide valuable chronological constraints. Such material is generally too old for U–Th dating and, although U–Pb geochronology presents a suitable alternative, bulk U concentrations are typically too low (<0.05 μg/g) to provide useful ages. For this reason, we used a simple non-invasive beta-scanner imaging screening step to identify U-rich (≥1 μg/g) domains that could be analyzed with MC-ICP-MS techniques to provide U–Pb ages. We demonstrate the technique using samples from Sterkfontein cave that exhibit infrequent <1 cm-thick layers with U concentrations ≥1 μg/g. Relict aragonite needles are found exclusively in these U-rich layers. We analyzed material from the same flowstone suite as Walker et al. (2006) and obtained a U–Pb age of ~2.3 Ma that agrees well with their estimate of 2.24 ± 0.09 Ma. We also obtained similar U–Pb (0.164 ± 0.026 to 0.200 ± 0.052 Ma) and U–Th (0.148 ± 0.003 Ma) ages for another sample exhibiting U-rich layers. We recognize that open-system behaviour during the partial transformation of aragonite to calcite is a potential problem and argue, on the basis of geochemistry and age consistencies, that recrystallization took place rapidly after speleothem formation and did not significantly affect the U–Pb ages.  相似文献   

4.
U-series systematics as well as Sr isotopes were measured on young seamount lavas from the Pitcairn hotspot collected during the Polynaut cruise. The combined U-series and Sr isotope data reveal typical mixing relationships between two endmembers. One typical ‘plume’ endmember with radiogenic 87Sr/86Sr and relatively low 230Th/238U and a ‘lithosphere’ endmember with less radiogenic 87Sr/86Sr and relatively larger 230Th/238U. Remarkably, all the lavas, except for a few arguably older samples, are characterized by 226Ra deficits relative to 230Th. On the basis of water content and trace element systematics, we argue that this is due to melting in the presence of phlogopite, which is only stable at lithosphere temperatures. A melting model including the diffusive exchange of elements among phlogopite, garnet and melt is used to constrain melting conditions of the lithosphere. These unusual 226Ra–230Th signatures can be explained by relatively slow melting rates at low matrix porosity. Our model also demonstrates that the effective partitioning behavior is dependent on the melting rate. A simple thermal model for lithosphere heating and melting is in good agreement with predicted melting rates.  相似文献   

5.
Zircon U–Pb dating using LA-ICP-MS was applied to six Quaternary tephras in Boso Peninsula, central Japan: J1, Ks4, Ks5, Ks10, Ks11, and Ch2 in descending order. Accurate age determination of these tephras is of critical importance because they are widespread tephras in Japan and also relevant to a candidate site for the global boundary stratotype section and point of the early–middle Pleistocene boundary. Twenty grains were dated for each tephra and the following results were obtained. The J1 tephra had only 5 grains that yielded <2 Ma. The obtained age was ∼0.2 m.y. older than the stratigraphic age. No Quaternary ages were obtained from the Ks4 tephra. The Ks5 and Ks10 tephras had 10–12 grains that were ∼0.1–0.3 m.y. older than the stratigraphic age. The Ks11 tephra had 14 grains that yielded a weighted mean age of 0.52 ± 0.04 Ma (error reported as 95% confidence level), which was in agreement with the stratigraphic age. The Ch2 tephra had 16 grains that yielded a weighted mean age of 0.61 ± 0.02 Ma, which was also in agreement with the stratigraphic age. The good agreement between zircon U–Pb ages and the stratigraphy for Ks11 and Ch2 tephras validates the reliability of the established stratigraphy and our dating approach. The other tephras that yielded ∼0.1–0.3 m.y. older ages than the stratigraphy may indicate that the analyzed zircons were antecrysts that crystallized before eruption or they were detrital zircons incorporated during deposition.  相似文献   

6.
Apatites from four pairs of samples of Precambrian basement from the western Canadian shield were analyzed by (U–Th)/He thermochronometry to test for the influence of radiation damage on apatite (U–Th)/He dates in this cratonic region. Recent studies have demonstrated that the accumulation of radiation damage increases the apatite He retentivity, so that apatites with a span of effective U concentrations, eU, that experienced the same thermal history may be characterized by a range of closure temperatures. In this investigation, each sample pair consisted of a mafic dike cross-cutting felsic gneisses from a single outcrop or nearby outcrops that contained apatites with a span of eU. The apatites yielded (U–Th)/He dates from 846 to 123 Ma, and were positively correlated with eU within each sample pair. These results can be explained using a model that tracks the evolution of He mobility in response to the accumulation of radiation damage. When coupled with regional geological constraints, the data appear to require partial to complete He loss due to burial and reheating in Phanerozoic time. New apatite fission- track dates and length data were obtained for five of these samples. The apatite fission- track dates are Proterozoic regardless of apatite eU. Thermal history simulations indicate that the apatite fission-track data are compatible with the (U–Th)/He results, although the thermal histories are not identical in detail and the fission-track results alone do not require Phanerozoic heating. Together the data are consistent with burial of this region by ≥ 1 km of Phanerozoic strata that were subsequently denuded, thus pointing toward significant Phanerozoic deposition in the North American cratonic interior hundreds of kilometers east of where previously documented. The results suggest that exploiting radiation damage control on apatite (U–Th)/He dates through investigation of surface sample apatites with a span of closure temperatures can impose tighter restrictions on thermal histories in low relief cratonic landscapes than was previously possible.  相似文献   

7.
The Ekomedion two-mica granite,southwestern Cameroon,has potential for uranium and molybdenum mineralization.Here,we present LA-ICP-MS U-Pb ages,Lu-Hf isotope characteristics,trace element concentrations and Ti-geothermometry of zircon from this granite hosting U-Mo mineralization in pegmatitic pods.The majority of zircon are CL-dark though some CL-bright cores were also identified.U-Pb zircon age data range from 121±3 to743±11 Ma with only 5 of 34 ages being near concordant.The concordant mean age of 603±12 Ma is similar to ages of granitic intrusions along the Central African Shear Zone in Cameroon.Apparent ages with mean of261±6 Ma reveal open system behavior with respect to Pb and/or U.Zircon e Hfi values range from-20.3 to-0.3.This implies that U-Mo was remobilized during partial melting of the surrounding gneiss.Zircon Th/U>0.1 as well as an increasing Hf with decreasing Th/U indicates that fractional crystallization was the main factor that controlled U-Mo mineralization in pegmatitic pods.Y and Y/Ho ratios cluster from 29 to 33 close to the chondritic ratio of 28 and indicate fractionation of Y and Ho with low F contents during the earliest stages of crystallization.Late stage accumulation of F-rich magmatic-hydrothermal fluids impacted U-Mo mineralization as a ligand.Zircon contains a prominent negative Eu anomaly pointing to a fractionating system rich in plagioclase.Calculated Ti-in-zircon temperatures span 672℃to1232℃with the temperatures at the high end reflecting interference from mineral inclusions in the zircon grains while the lower temperature values are linked to crystallization.  相似文献   

8.
Calcitic crusts of calcareous red algae could be suitable material for age determination of raised marine deposits and palaeothermometry at annual to sub-annual resolution. We examined the potential of U–Th dating of cold-water calcareous algae by analysing fossil specimens (n=10) from Kapp Ekholm (Svalbard) and recent specimens from Norway (n=3) and Scotland (n=1). After initial measurements using α-spectrometry, thermal ionisation mass spectrometry (TIMS) was used to study the material in more detail. Recent specimens contain 0.19–1.55 μg g−1 U, and the measured (234U/238U) activity ratios vary between 1.12 and 1.30. Fossil specimens contain 1–168 μg g−1 U, and display variable and highly elevated initial (234U/238U) activity ratios. In general, the TIMS results show increasing (234U/238U) activity ratios and concentrations of U and Th with increasing stratigraphic age. From this it is evident that marine calcareous red algae contain U in-vivo and they experience substantial post-mortem uptake of U. We conclude that direct U–Th dating of fossil calcareous algae from raised marine deposits is not viable without further geochemical understanding of the in-vivo uptake and post-depositional pathways of U and Th in such deposits. Despite the convincing open-system behaviour of the material, comparison with previously published chronostratigraphy from the site shows that the calcareous algae generally yield ages that are too old. This is in contrast to the expected result based on simple continuous post-mortem U accumulation and calls for a complex model comprising migration of U and multi-component addition of Th (detrital/colloidal) to explain the observed trends.  相似文献   

9.
The Rb–Sr decay system is one of the most widely used geochronometers for obtaining ages and cooling rates of terrestrial magmatic, metamorphic, and hydrothermal events. It has also been extensively applied to date extraterrestrial, early solar system events. The accuracy of Rb–Sr ages, however, strongly depends on the accuracy of the 87Rb decay constant (λ87Rb). We determined λ87Rb relative to the decay constants of 235U and 238U by comparing Rb–Sr ages of minerals with U–Pb ages obtained from the same intrusion. Comparison of U–Pb emplacement ages with high-precision Rb–Sr mineral ages from three rapidly cooled igneous rocks covering an age range of ca. 2.5 Ga yields an unweighted mean λ87Rb of 1.393 ± 0.004 × 10?11 yr?1 (i.e., ± 0.3%), corresponding to a half-life of 49.76 × 109 years. Because this decay constant is 2% lower than the presently recommended one, many previously published ages are 2% too young and the resulting geologic interpretations may need revision.  相似文献   

10.
Although vertebrate fossils are commonly abundant in museum palaeontological collections, they are only rarely accompanied by contextual data (e.g., stratigraphic and taphonomic information) that allow them to be placed independently into reliable temporal frameworks critical for testing significant evolutionary and extinction hypotheses. Moreover, where critical samples do exist in such collections, sampling for direct geochronological analyses becomes a significant concern, especially where such sampling is destructive in nature. Here we apply a direct fossil dating, micro-drilling sampling approach that minimises damage to and destruction of precious museum specimens. We carried out a systematic U–Th dating study (n = 28 ages) of an isolated museum specimen of the extinct Palorchestes azael (megafaunal ‘marsupial tapir’) originally collected in 1977 from Tea Tree Cave, Chillagoe, northeastern Australia. We obtained 21 U–Th ages and constructed 230Th-age profiles across three teeth exposed in cross-section, using micro-drilling and thermal ionisation mass spectrometry. Individual sample masses were as little as 0.18 mg (U concentration 33–82 ppm), meaning that the sampling resulted in only minimal destruction of the specimen. The results show no evidence of U leaching, suggesting that the dates represent reliable minimum ages. For independent age control, we also dated calcite that had encrusted the sample (thus, providing a minimum age; n = 6) and an older calcite clast that had been reworked into the surrounding breccia at the time of burial (thus, providing a maximum age; n = 1). U–Th ages of the teeth are older than the calcite overgrowths and younger than the reworked calcite, consistent with their demonstrable relative age relationships. Collectively, the results unequivocally bracket the age of the fossil between 199.1 ± 8.9 ka and 137.4 ± 1.1 ka (2σ), adding another rare datum to inform the timing and geographic distribution of last occurrences of the species. The benefits of our dating approach of museum fossil specimens are threefold: 1) it is minimally destructive even compared with laser-ablation method; 2) the use of U vs. apparent age approach allows direct testing for potential U leaching as occasionally seen in fossil dating; and 3) the combination of fossil and associated speleothem dating provides the most robust means of securely bracketing the age of fossils that lack firm stratigraphic control.  相似文献   

11.
A large number of Eocene-Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau.In this study,we present zircon U-Pb ages,Hf isotope data,and major and trace element compositions of the Cenozoic alkaline rocks from the Tuotuohe region in order to constraint the petrogenesis and tectonic evolution history of Qiangtang Block.Zircon U-Pb ages were measured via LA-ICP-MS to be39.6,37.6 and 32.0 Ma.The 39.6 Ma trachyte was characterized by low SiO2 and high K2O and MgO contents.The 37.6 and 32.0 Ma orthophyres show enrichment in SiO2 and K2O,but deficient in MgO.All of the samples belong to the alkaline rocks.These rocks display enrichment in REE,LREE,and LILE,depletion in HFSE,and no obvious Eu anomalies.Geological and geochemical features suggest that there were two possible mechanisms for the origin of the alkaline rocks in the Tuotuohe region:(1)the removed mafic lower crust dropped into the asthenosphere,forming the mix magma(Nariniya trachyte);(2)the upwelling asthenosphere triggered the crustal melting(Nariniya and Zamaqu orthophyre).The Eocene-Oligocene alkaline rocks in the study and adjacent areas are likely to be the result of the same tectonic-magmatic event of deep lithospheric evolution that is the crustal material melting triggered by lithospheric delamination.This conclusion extends the influence scope of lithospheric delamination eastward to the Tuotuohe region(*92°E)from Banda Co(*82°E).  相似文献   

12.
The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite of rock bodies includes a vein of pseudoleucite porphyry within deposits of syenite porphyry and trachyte.The pseudoleucite is characterized by a variable greyish,greyish-white, and greyish-green porphyritic texture. Phenocrysts are mainly pseudoleucite with small amounts of alkali feldspar and biotite. In an intense event, leucite phenocrysts altered to orthoclase, kaolinite, and quartz.Both the pseudoleucite porphyry and the syenite porphyry samples were typical alkali-rich, K-rich, al-rich rocks with high LaN/YbNratios; enriched in light rare earth elements and large-ion lithophile elements, and depleted in high field strength elements; and with strongly negative Ta, Nb, and Ti(TNT) anomalies and slightly negative Eu anomalies—all characteristics of subduction-zone mantle-derived rock.We obtained a LA-ICP-MS zircon U–Pb age of 34.1 ± 0.3 Ma(MSWD = 2.4), which is younger than the established age of the Indian and Eurasian Plate collision.The magma derived from a Type-II enriched mantle formed in a post-collisional plate tectonic setting. The geochemical characteristics of the Yao'an pseudoleucite porphyry are powerful evidence that the porphyry'sdevelopment was closely linked to the Jinshajiang–Ailaoshan fault and to the Indian-Eurasian collision.  相似文献   

13.
The XV mafic-ultramafic intrusion is located in the western part of the Posht-e-Badam Block (PBB) within the Central Iranian Micro-Continent (CIMC). Petrographically, the intrusion is composed of gabbro and pyroxenite. Apatite U–Pb dating has established the crystallization age of this intrusion to be 363 ± 67 Ma. The XV intrusive rocks are tholeiitic to slightly calc-alkaline in nature and are characterized by an enrichment of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and Heavy Rare Earth Elements (HREE), respectively. The major oxide elements display continuous trends relative to SiO2. The 87Sr/86Sr(i) ratios range from 0.7045 to 0.7056, and the εNd(i) values range from 2.63 to 3.30. In addition, the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios exhibit a narrow range, varying from 18.68 to 18.70, 15.67 to 15.71, and 38.84 to 38.99, respectively. The geochemical and isotopic characteristics suggest that the parental magma was derived from a Sub- Continental Lithospheric Mantle (SCLM) that was modified by oceanic slab-derived components. The locations of the XV intrusive rocks in εNd(i) versus TDM (Ga) and Nb/La versus discrimination diagrams further support this conclusion. Fractional crystallization is identified as the dominant process influencing the formation of distinct lithological units within the XV intrusive rocks. Our newly presented isotopic and geochronological data, when considered in the regional context, suggest that the XV intrusive rocks were formed in an extensional tectonic setting. In this scenario, upwelling from the asthenospheric mantle induced heating, leading to the melting of previously subduction-modified SCLM. Comparative analysis with previously published ages indicates that extensional magmatism in the PBB continued into the Middle Paleozoic.  相似文献   

14.
The cratonization history of the North China Craton(NCC) and the nature of tectonothermal events are still highly controversial. Tonalite-trondhjemite-granodiorite(TTG) gneisses, as the dominant lithological assemblages in Archean metamorphic terranes, can provide significant clues to the magmatic and metamorphic evolution of Precambrian crust. This study presents zircon laser-ablation inductively-coupled-plasma mass spectrometry U–Pb ages, trace-element, and in-situ LA-MC-ICPMS zircon Hf isotope data for the TTG gneisses from the Bengbu-Wuhe area on the southeastern margin of the NCC.Cathodoluminescence images and trace elements indicated that magmatic zircons display the characteristics of euhedral-subhedral crystals with oscillatory growth zoning structures, high RREE contents, marked Ce positive anomalies, and Pr–Eu negative anomalies. The metamorphic zircons display the spherical-oval crystals with distinct core-rim structures, high and homogeneous luminescent intensity, lower RREE, Nb, Ta, Hf contents,relative flat REE patterns, weak Ce positive anomalies, and Pr-Eu negative anomalies. The Ti–in–zircon geothermometer data indicate that the crystallization temperature of the TTG gneiss ranged from 754 to 868 ℃. Zircon U–Pb ages indicate that the TTG gneisses formed at 2.79–2.77 Ga and 2.50 Ga and underwent metamorphism at 2.57–2.52 Ga. The Hf isotopic data indicate that the magmatic zircons exhibit high, positive eHf(t) values close to those of the coeval depleted mantle, whereas the metamorphic zircons exhibit negative or nil eHf(t) values. This implies that the TTG gneisses were derived from the partial melting of the ~ 2.9–2.6 Ga juvenile crustal sources mixed with ~ 3.0–2.8 Ga ancient crustal materials.Combined with the regional tectonic evolution, we propose that the metamorphic basement at the southeastern margin of the NCC underwent episodic crustal growth at ~ 2.7 and ~ 2.5 Ga and subsequently underwent crustal reworking or re-melting of the ancient crust during the Neoarchean. The Neoarchean TTG gneisses might have been derived from the partial melting of lower crustal materials related to plate subduction.  相似文献   

15.
The Permo-Carboniferous Oslo Rift developed in the foreland of the Variscan orogen over a period of some 50 million years through a process characterized by moderate extension and widespread magmatism. The overall tectonic situation places the Oslo Rift in a post-collisional, dextral transtensional setting related to the convergence between Baltica, Laurentia, Gondwana and Siberia during assembly of Pangea, the location probably reflecting the control by pre-existing lithospheric structures. Although a detailed understanding of these factors and processes relies strongly on having a good age control, the dating of mafic to ultramafic alkalic volcanic units formed during initial rifting has been a very challenging task. In this study we have successfully employed perovskite from melilitic and nephelinitic volcanic rocks, together with magmatic titanite in a more evolved ignimbrite, to obtain ID-TIMS high-precision U–Pb ages. Three samples from various levels of the Brunlanes succession, in the southernmost exposures of the Oslo Graben, yield ages of 300.2 ± 0.9, 300.4 ± 0.7 and 299.9 ± 0.9 Ma. A melililitic tuff at the base of the Skien succession further to the northwest yields a slightly younger age of 298.9 ± 0.7 Ma. The initial Pb compositions derived mainly from coexisting pyroxene, apatite and hornblende are characterized by extremely radiogenic initial 206Pb/204Pb ratios (up to 21.3) that confirm a provenance of these early alkaline basalts from HIMU-type sources. The U–Pb ages coincide with the Gzhelian age inferred from fossils in the upper part of the basal rift sedimentary fill of the Asker Group, and post-date the underlying basal sedimentary sequences by some 10 million years, pointing to a relatively rapid initiation of the rifting process.  相似文献   

16.
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ~(87)Rb/~(86)Sr and ~(87)Sr/~(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ~(87)Sr/~(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.  相似文献   

17.
U–Pb dating of detrital zircons (DZ) in Quaternary slope deposits (cover beds) and examination of the surface structure of single zircon grains may enable reconstruction of the provenance of their aeolian components and help to reconstruct sedimentary palaeo-transportation cascades. We distinguish several layers of slope deposits (cover beds) using a palaeosol-supported sequence-stratigraphic approach. In a pilot study, we demonstrate the usability of using end-member-modelled analyses of grain sizes to identify the aeolian matter, multi-dimensional scaling and density functions (probability density functions (PDF) and Kernel density estimations (KDE)) of the U–Pb data, and the grain morphology of DZ, and show that the age and appearance variation of DZ in the Great Basin differ remarkably from those of the Colorado Plateau. All samples contain aeolian matter. Density functions of the DZ ages show similarities within each of the two regions. The Great Basin samples are dominated by late Cretaceous and Paleogene zircons, which are assumed to derive from volcanism. In contrast, the Colorado Plateau samples are almost free of these contributions. Presumably, the difference is due to palaeolakes, which were frequent in the Great Basin only, whose sediments contain a similar spectrum of DZ ages. Zircon morphology indicates that most grains have a history of aeolian transportation, whereas the grains assumed to be of volcanic origin often do not show similar transportation marks; this indicates that their transportation was dominated by the eruptive process but fewer steps of a transportation cascade. Multidimensional scaling of age data defines clusters of samples with similar DZ ages and – compared with published ages from possible sources – allows first interpretations of provenance. Quaternary aeolian sediments have not been studied in, and the applied mix of methods has not been applied to, the southwestern USA before. We demonstrate their feasibility for this study area.  相似文献   

18.
The loess-paleosol sequence on the Chinese Loess Plateau provides a unique archive that records climate change in East Asia in the Quaternary, yet absolute dating of the loess deposits is challenging due to the lack of directly datable materials. Fossil land snail shells, which are made from aragonite, are widely preserved in the loess deposits and have long been used to reconstruct past environmental changes. U-series dating of fossil land snail shells has the potential to provide a route for absolute dating of the loess deposits but remains largely unexplored. In this study, we present the first systematic investigation on the U-series isotope geochemistry as well as the early diagenetic imprints of fossil land snail shells (Cathaica sp.) from the Mangshan loess-paleosol sequence in Henan province, central China. Several geochemical techniques, including Raman microscopy, SEM, LA-ICPMS, LA-MC-ICPMS, solution-MC-ICPMS, and AMS 14C dating, were employed to investigate the mineralogy, chemical and isotopic compositions of both modern and fossil snail shells to micrometer level. Our results show that the fossil Cathaica sp. shells are overall characterized by a higher degree of porosity and elevated contents of organic matter compared to live-collected shells of the same species. The layers with higher porosity and organic matter content in the fossil Cathaica sp. shell are also found to be enriched in Na, Mg, Mn, Ba, and U, indicating diffusion and adsorption of these elements by specific surface binding sites of either aragonitic lattice or organic compounds of the fossil shell. Combining in-situ measurements using LA-MC-ICPMS with solution U-series determination, we further demonstrate that fossil Cathaica sp. shell is relatively homogeneous regrading both [234U/238U] and [230Th/238U] values although the distribution of U in the fossil shell is sample-specific. The comparison of different dating results suggests that the calculated apparent closed system U–Th ages are all systematically younger (∼6000 to 13,000 years) than the corresponding shell 14C ages and quartz SAR (single-aliquot regenerative-dose) ages from the Mangshan section. We suggest that the underestimation of U–Th ages of fossil Cathaica sp. shells is very likely caused by diagenetic uptake of U that started immediately after the burial of the shell and effectively ceased when the fossil shell was isolated from the pore waters due to persistent deposition of eolian dust at the Mangshan section. Our work on both modern and fossil Cathaica sp. shells thus provides detailed morphological and geochemical characterization for the diagenetic alteration of fossil snail shells and suggests that U-series dating of fossil land snail shells may provide age constraints for dust deposits in the semi-arid region although the timing of early diagenetic U-uptake by the fossil shells need to be better quantified for reliable age determination.  相似文献   

19.
The Dongnan Cu–Mo deposit, located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China), represents the complex magmatic and metallogenesis events in the region. The petrogenesis and metallogenesis of granitoids from the deposit are not determined, especially the interactions between ore-bearing(granodiorite porphyry) and barren samples(granodiorite and diorite). In the paper, the whole rock geochemical features shared a similar affinity to the m...  相似文献   

20.
We report U–Pb dating of zircon,as well as geochemical and Hf isotope data,in order to constrain the formation time,magma source,and tectonic setting of granite porphyry dykes in the Xicha gold–(silver) district in southern Jilin Province,Northeast China.The zircon grains are euhedral–subhedral,display oscillatory growth zoning and have Th/U ratios varying between 0.11 and 0.78,which together imply a magmatic origin.The dating results indicate the porphyry formed in the Early Cretaceous (122±1 Ma)and it contains SiO_2=70.64–72.31 wt%,Al_2O_(3-)=13.99–14.64 wt%,K_2O+Na_2O=6.96–7.81 wt%K_2O/Na_2O=1.24–2.10,and A/CNK=1.11–1.41.Chemically,the porphyry belongs to a high-K calc-alkaline S-type granite.Chondrite-normalized rare earth elements (REE)patterns show LREE enrichment,light rare earth elements(LREE)/heavy rare earth elements (HREE)=9.93–11.97(La/Yb)_N=11.08–15.16,and d Eu=0.69–0.95.On the trace element spider diagram,large ion lithophile elements such as Rb,Ba,K,Th,and U are enriched,whereas the high field strength elements Ti and P are depleted.The e Hf(t) values of zircon from the granite porphyry vary between-17.1 and-13.2,and their Hf two-stage model ages vary from 2.01 to 2.26 Ga,implying that the magma was derived from partial melting of old lower crust.The granite porphyry dykes and many A-type granites in the region formed at the same time,suggesting an extensiona environment.The combination of the occurrence of strong magmatism,large-scale mineralization,and extensiona tectonics throughout much of Eastern China indicate that the Early Cretaceous was a period of significant lithospheric thinning.The southern Jilin Province,therefore,experienced lithospheric thinning during the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号