首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

2.
We report observations at 0.56 and 2.2 μm of the Apollo asteroid 1976 AA made during its discovery apparition. We derive a 2.2-μm relative spectral reflectance (scaled to unity at 0.56 μm) of R(2.2 μm) = 1.5 ± 0.3. This 2.2-μm reflectance is not compatible with a carbonaceous surface composition. However, it is compatible with a wide variety of meteoritic types including ordinary chondrites, stony irons, and mesosiderites. Thus, 1976 AA may have a silicate surface similar to other Apollo-Amor objects.  相似文献   

3.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   

4.
Abstract— Scanning electron microscopy and secondary ion mass spectrometry of the unequilibrated CH chondrite Pecora Escarpment (PCA) 91467 revealed four carriers of isotopically heavy N: (1) aggregates of carbonaceous material and silicates, (2) iron‐nickel metal grains with fine Fe‐Cr sulfide inclusions, (3) Si‐rich Fe‐Ni metal associated with Fe‐sulfide and (4) hydrated areas in the matrix. N in carbon‐silicate aggregates is isotopically heavy (δ15N is as high as 2500%0), whereas the other elements are isotopically normal, suggesting interstellar origin of carbonaceous material in the aggregates. Based on isotopic and textural evidence, we suggest that the carriers (2) and (3) were formed by brief heating in the solar nebula, whereas the carrier (4) was formed in a parent‐body asteroid. The carbon‐silicate aggregates are likely to be related to interstellar graphite found in Murchison and may also be the source of heavy N in bencubbinites.  相似文献   

5.
High-resolution spectroscopic observations of asteroids Ceres and Pallas have been obtained in the 1.0- to 2.6-μm region. Combined with previous spectralmeasurements at other wavelengths, this work presents the broadband spectral reflectances of these asteroids over the 0.4 to 3.6-um region. This extended coverage permits new analyses of the surface mineralogies of these objects. Using laboratory comparison spectra of meteorites and mixtures of terrestrial minerals, the surfaces of Ceres and Pallas are consistent with mixtures of opaques and hydrated silicates, such as are found in types C1 and C2 meteorites. This research emphasizes the importance of the 3-um spectral region for studying by remote methods the relationship of carbonaceous chondrite mineralogies to asteroid surfaces.  相似文献   

6.
Spectrophotometric observations of 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira—asteroids of close primitive types—allowed us to detect similar mineralogical absorption bands in their reflectance spectra centered in the range 0.35 to 0.92 μm; the bands are at 0.38, 0.44, and 0.67–0.71 μm. On the same asteroids, the spectral signs of simultaneous sublimation activity were found for the first time. Namely, there are maxima at ~0.35–0.60 μm in the reflectance spectra of Adeona, Interamnia, and Nina and at ~0.55–075 μm in the spectra of Beira. We connect this activity with small heliocentric distances of the asteroids and, consequently, with a high insolation at their surfaces. Examination of the samples of probable analogues allowed us to identify Fe3+ and Fe2+ in the material of these asteroids through the mentioned absorption bands. For analogues, we took powdered samples of carbonaceous chondrites Orgueil (CI), Mighei (CM2), Murchison (CM2), and Boriskino (CM2), as well as hydrosilicates of the serpentine group. Laboratory spectral reflectance study of the samples of low-iron Mg serpentines (<2 wt % FeO) showed that the equivalent width of the absorption band centered at 0.44–0.46 μm strongly correlates with the content of Fe3+ in octahedral and tetrahedral coordinations. Our conclusion is that this absorption band can be used as a qualitative indicator of Fe3+ in the surface matter of asteroids and other solid celestial bodies. The comparison of the listed analog samples and the asteroids by parameters of the spectral features suggests that the silicate component of the asteroids' surface material is a mixture of hydrated and oxidized compounds, including oxides and hydroxides of bivalent and trivalent iron and carbonaceous-chondritic material. At the same time, the sublimation activity of Adeona, Interamnia, Nina, and Beira at high surface temperatures points to a substantial content of water ice in their material. This contradicts the previously existing notions on the C-type and similar asteroids as bodies containing water only in the bound state. Moreover, since the sublimation process simultaneously occurs in four primitive-type bodies at small heliocentric distances, we may suppose that this phenomenon is common for the main-belt asteroids.  相似文献   

7.
A report of the detection of the C-H hydrocarbon band complex at 3.4 μm in an asteroid spectrum, by D. P. Cruikshank and R. H. Brown (1987, Science238, 183-184) is not confirmed by recent data of higher quality. Spectra of the same asteroid and six other low-albedo asteroids do not show this feature, which if present would indicate the presence of hydrocarbons and might link these asteroids with certain classes of carbonaceous meteorites.  相似文献   

8.
We present results of laboratory near-infrared reflectance studies of a set of calcic pyroxenes with comparable calcium contents (Wo45-50) but variable iron content and oxidation states. This new dataset complements earlier published data (Cloutis and Gaffey, 1991, J. Geophys. Res. 96, 22809-28826, and references therein). In particular, our new spectra extend the scarce available spectral data on chemically analyzed Fe-rich high-Ca clinopyroxenes. We attempted to interpret the spectral behavior of our samples in terms of chemistry and coordination site occupancies. Tentatively, we conclude that Fe-rich calcic pyroxenes have very low contents of Fe2+ in the M2 sites and belong to the spectral type A lacking the 2-μm band. This may be due to high Ca and Mn contents in these pyroxenes. Fe-poor high-Ca pyroxenes are more spectrally variable. In general, they tend to belong to the spectral type B with two major bands near 1 and 2 μm, unless the samples have high Fe3+/Fe2+ ratios or are rich in Mn and Ca. Some of them (including unusual meteorite Angra dos Reis) are of type B despite very high Ca contents. We applied the Modified Gaussian Model (MGM) to characterize three major Fe2+ absorption bands in the 1-μm region of the spectra of Ca-rich pyroxenes. Only the band due to Fe2+ in the M1 coordination site near 1.15 μm may be potentially useful to estimate the Fe content in calcic pyroxenes on remotely-sensed surfaces of Solar System bodies. The spectral variability of basaltic meteorites (angrites) that are rich in calcic pyroxenes is also discussed. The presence of spectral type A calcic pyroxenes in these meteorites complicates unambiguous identification of olivine in asteroid spectra.  相似文献   

9.
Using new model calculations, we study the production of chlorine and sulfur isotopes in different irradiation scenarios. We demonstrate that irradiation during meteorite transit from the asteroid belt to Earth has a negligible influence on the sulfur isotopic composition. We analyzed five different physical assemblages: carbonaceous chondrites, carbonaceous chondrites covered with water ice, carbonaceous chondrites covered with water ice that contains silicates and chlorine, precursor CAIs, and water ice that contains chlorine. For each of these five we ran simulations in which they were irradiated by galactic cosmic rays or solar energetic particles. We found that for producing sufficient amounts of 36Cl, the required GCR and SEP flux densities must have been either unreasonably high on absolute terms or must had been high relatively late after the formation of the solar system. This finding casts doubt on the interpretation of the correlation lines in the diagram 36S/34S and 35Cl/34S as isochrons. Alternatively, the correlation may be interpreted as mixing between water that contains chlorine that has been irradiated (likely as ice) either by GCR or SEP particles and sulfur (without any chlorine) with solar isotopic composition. Using this model we can explain the correlation as mixing between components, one of which was exposed to energetic particles; the conditions of this irradiation are not unrealistic.  相似文献   

10.
Abstract— Bottke et al. (2007) suggested that the breakup of the Baptistina asteroid family (BAF) 160+30/‐20 Myr ago produced an “asteroid shower” that increased by a factor of 2–3 the impact flux of kilometer‐sized and larger asteroids striking the Earth over the last ?120 Myr. This result led them to propose that the impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago also may have come from the BAF. This putative link was based both on collisional/dynamical modeling work and on physical evidence. For the latter, the available broadband color and spectroscopic data on BAF members indicate many are likely to be dark, low albedo asteroids. This is consistent with the carbonaceous chondrite‐like nature of a 65 Myr old fossil meteorite (Kyte 1998) and with chromium from K/T boundary sediments with an isotopic signature similar to that from CM2 carbonaceous chondrites. To test elements of this scenario, we obtained near‐IR and thermal IR spectroscopic data of asteroid 298 Baptistina using the NASA IRTF in order to determine surface mineralogy and estimate its albedo. We found that the asteroid has moderately strong absorption features due to the presence of olivine and pyroxene, and a moderately high albedo (?20%). These combined properties strongly suggest that the asteroid is more like an S‐type rather than Xc‐type (Mothé‐Diniz et al. 2005). This weakens the case for 298 Baptistina being a CM2 carbonaceous chondrite and its link to the K/T impactor. We also observed several bright (V Mag. ≤16.8) BAF members to determine their composition.  相似文献   

11.
The surface reflectance properties of the irregular outer planets satellites are probed for evidence for the presence of aqueous alteration products on their surfaces using the strong correlation between the 3.0-μm water of hydration absorption feature and the 0.7-μm Fe2+ → Fe3+ oxidized iron feature seen in low-albedo asteroid reflectances, in an effort to expand our understanding of the composition of the precursor bodies from which the dynamical satellite clusters are derived. Equations converting Johnson V and Kron-Cousins RI photometry to Eight Color Asteroid Survey v (0.550 μm), w (0.701 μm), and x (0.853 μm) photometry are derived from relationships defined by Howell (1995, Ph.D. thesis), and coupled with an algorithm previously defined to detect the presence of the 0.7-μm absorption feature in ECAS asteroid photometry [Vilas, F., 1994. Icarus 111, 456-467]. Broadband VRI photometry of Ch-class Asteroid 19 Fortuna acquired during 2004 confirms the efficacy of this method of identifying the presence of the 0.7-μm feature. Photometric observations of many recently discovered irregular outer jovian, saturnian, uranian, and neptunian satellites, coupled with limited asteroid spectroscopy, were examined for the presence of aqueous alteration. The dynamical clusters of outer irregular jovian satellites are mixed between objects that do and do not show this absorption feature. Multiple observations of some objects test both positively and negatively, similar to the surface variegation that has been observed among many C-class asteroids in the main asteroid belt. Evidence for aqueous alteration on these jovian satellites augers for an origin in or near the same location as the asteroids now occupying the aqueous alteration zone (2.6-3.5 AU), at heliocentric distances internal to Jupiter's orbit. Among the saturnian irregular satellites, only S IX Phoebe shows limited evidence of aqueous alteration from ground-based observations. The other satellites show no sign of this feature, and have general reflectance properties very similar to the D-class asteroids, supporting an origin for their precursor bodies in the outer Solar System, perhaps the Centaur region. Only two uranian satellites were tested: U XVII Caliban tests positively for the feature. The differences in surface reflectance properties support the idea that Caliban and U XVI Sycorax derive from separate parent bodies. One observation of neptunian satellite N II Nereid shows no sign of this absorption feature.  相似文献   

12.
Abstract— Twenty-two carbonaceous chondrite clasts from the two howardites Bholghati and EET87513 were analyzed. Clast N from EET87513 is a fragment classified as CM2 material on the basis of texture, bulk composition, mineralogy, and bulk O isotopic composition. Carbonaceous chondrite clasts from Bholghati, for which less data are available because of their small size, can be divided into two petrologic types: C1 and C2. C1 clasts are composed of opaque matrix with rare coarse-grained silicates as individual mineral fragments; textures resemble CI meteorites and some dark inclusions from CR meteorites. Opaque matrix is predominantly composed of flaky saponite; unlike typical CI and CR meteorites, serpentine is absent in the samples we analyzed. C2 clasts contain chondrules, aggregates, and individual fragments of coarse-grained silicates in an opaque matrix principally composed of saponite and anhydrous ferromagnesian silicates with flaky textures similar to phyllosilicates. These anhydrous ferromagnesian silicates are interpreted as the product of heating of pre-existing serpentine. The carbonaceous chondrite clasts we have studied from these two howardites are, with one notable exception (clast N from EET87513), mineralogically distinct from typical carbonaceous chondrites. However, these clasts have very close affinities to carbonaceous chondrites and have also experienced thermal metamorphism and aqueous alteration, but to different degrees.  相似文献   

13.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

14.
New spectral reflectance measurements of asteroid 4 Vesta were obtained using a silicon vidicon spectrometer with a resolution of 0.002–0.004 μm. The major absorption band in the near infrared has a minimum at 0.924 ± 0.004 μm with a bandwidth of 0.18 μm full width at half power (fwhp). The band represents a 30% absorption relative to peak reflectance at 0.75 μm. The absorption band has been interpreted to be due to electronic absorptions in ferrous iron in sixfold coordination in the pyroxene, pigeonite. The increased spectral resolution of these observations compared to earlier spectrophotometry enables us to refine the pyroxene composition, from the position of the Fe2+ absorption band, and arrive at a relative calcium content [Ca/(Mg + Fe + Ca)] of 10–12%. The absorption band is symmetric about its center, implying the presence of little or no olivine. The existence of the 2.0-μm pyroxene band which was verified by Larson and Fink (1975) confirms the interpretation based on the 1.0-μm band.  相似文献   

15.
Harold P. Larson  Uwe Fink 《Icarus》1975,26(4):420-427
An ir spectrum of asteroid Vesta, the first of any asteroid, has been recorded at a spectral resolution of 44 cm?1 with a Fourier spectrometer. An electronic absorption band is observed that is assigned to an iron-rich pyroxene (pigeonite) spectroscopically similar to that found in certain eucrites. Other important rock-forming minerals such as olivine and plagioclase feldspar are not observed. There is no evidence for compositional variation with rotational phase angle. This spectroscopic picture of Vesta suggests considerable evolution including the melting and differentiation of silicates.  相似文献   

16.
Abstract— –The distribution of sediment‐dispersed extraterrestrial (ordinary chondritic) chromite (EC) grains (>63 μm) has been studied across the latest Maastrichtian and Paleocene in the Bottaccione Gorge section at Gubbio, Italy. This section is ideal for determining the accumulation rate of EC because of its condensed nature and well‐constrained sedimentation rates. In a total of 210 kg of limestone representing eight samples of 14–28 kg distributed across 24 m of the Bottaccione section, only 6 EC grains were found (an average of 0.03 EC grains kg?1). In addition, one probable pallasitic chromite grain was found. No EC grains could be found in two samples at the Cretaceous‐Tertiary (K‐T) boundary, which is consistent with the K‐T boundary impactor being a carbonaceous chondrite or comet low in chromite. The average influx of EC to Earth is calculated to ~~0.26 grain m?2 kyr?1. This corresponds to a total flux of ~~200 tons of extraterrestrial matter per year, compared to ~~30,000 tons per year, as estimated from Os isotopes in deep‐sea sediments. The difference is explained by the EC grains representing only unmelted ordinary chondritic matter, predominantly in the size range from ~~0.1 mm to a few centimeters in diameter. Sedimentary EC grains can thus give important information on the extent to which micrometeorites and small meteorites survive the passage through the atmosphere. The average of 0.03 EC grain kg?1 in the Gubbio limestone contrasts with the up to ~~3 EC grains kg?1 in mid‐Ordovician limestone that formed after the disruption of the L chondrite parent body in the asteroid belt at ~~470 Ma. The two types of limestone were deposited at about the same rate, and the difference in EC abundance gives support for an increase by two orders of magnitude in the flux of chondritic matter directly after the asteroid breakup.  相似文献   

17.
Abstract Thermal metamorphism study of the C, G, B, and F asteroids has been revisited using their UV, visible, NIR, and 3 μm reflectance spectra. High-quality reflectance spectra of seven selected C, G, B, and F asteroids have been compared with spectra for 29 carbonaceous chondrites, including thermally-metamorphosed CI/CM meteorites. There are three sets of spectral counterparts, among which 511 Davida and B-7904 are the most similar to each other in terms of both spectral shape and brightness. By comparing the 0.7 μm and 3 μm absorption strengths of 21 C, G, B, and F asteroids and heated Murchison samples, these asteroids have been grouped into three heating-temperature ranges. These correspond to (1) <400 °C: phyllosilicate-rich; (2) 400–600 °C: phyllosilicates transformed to anhydrous silicates; and (3) >600 °C: fully anhydrous. A good correlation between the UV and 3 μm absorption strengths has been confirmed for the C, G, B, and F asteroids and the CI, CM, and CR meteorites. A plot of the UV absorption strength vs. the IRAS diameter for 142 C, G, B, and F asteroids shows that the maximum UV absorption strength decreases as the diameter increases for the asteroids >60 km, with a notable exception, Ceres. These relationships suggest that some of the larger asteroids may be the heated inner portions of once larger bodies and that common CI/CM meteorites may have come from the lost outer portions, which escaped extensive late-stage heating events.  相似文献   

18.
E.A. Cloutis  P. Hudon  T. Hiroi  M.J. Gaffey 《Icarus》2012,217(1):389-407
Powdered samples of a suite of 14 CR and CR-like chondrites, ranging from petrologic grade 1 to 3, were spectrally characterized over the 0.3–2.5 μm interval as part of a larger study of carbonaceous chondrite reflectance spectra. Spectral analysis was complicated by absorption bands due to Fe oxyhydroxides near 0.9 μm, resulting from terrestrial weathering. This absorption feature masks expected absorption bands due to constituent silicates in this region. In spite of this interference, most of the CR spectra exhibit absorption bands attributable to silicates, in particular an absorption feature due to Fe2+-bearing phyllosilicates near 1.1 μm. Mafic silicate absorption bands are weak to nonexistent due to a number of factors, including low Fe content, low degree of silicate crystallinity in some cases, and presence of fine-grained, finely dispersed opaques. With increasing aqueous alteration, phyllosilicate: mafic silicate ratios increase, resulting in more resolvable phyllosilicate absorption bands in the 1.1 μm region. In the most phyllosilicate-rich CR chondrite, GRO 95577 (CR1), an additional possible phyllosilicate absorption band is seen at 2.38 μm. In contrast to CM spectra, CR spectra generally do not exhibit an absorption band in the 0.65–0.7 μm region, which is attributable to Fe3+–Fe2+ charge transfers, suggesting that CR phyllosilicates are not as Fe3+-rich as CM phyllosilicates. CR2 and CR3 spectra are uniformly red-sloped, likely due to the presence of abundant Fe–Ni metal. Absolute reflectance seems to decrease with increasing degree of aqueous alteration, perhaps due to the formation of fine-grained opaques from pre-existing metal. Overall, CR spectra are characterized by widely varying reflectance (4–21% maximum reflectance), weak silicate absorption bands in the 0.9–1.3 μm region, overall red slopes, and the lack of an Fe3+–Fe2+ charge transfer absorption band in the 0.65–0.7 μm region.  相似文献   

19.
Photometry and thermal lightcurves of six large asteroids (1-Ceres, 2-Pallas, 3-Juno, 12-Victoria, 85-Io and 511-Davida) have been observed at 870 μm (345 GHz) using the MPIfR 19-Channel Bolometer of the Heinrich-Hertz Submillimeter Telescope. Only Ceres displayed a lightcurve with an amplitude (∼50%, peak to peak) that was significantly greater than the uncertainty in the observations. When thermal fluxes and brightness temperatures are corrected for heliocentric distance and albedo, there is a significant relation with the sub-solar latitude of the asteroid, or the local season of the asteroid. No such trend can be found between observations with solar phase angle. These results are evidence that most of the submillimeter thermal radiation is emitted from below the diurnal thermal wave. Comparing the observed trend with model output suggests that the submillimeter radiation from all the asteroids we observed is best modeled by surface material with low thermal inertia (<15 J m−2 s−0.5 K−1, consistent with mid-infrared observations of large main-belt asteroids) and a refractive index closer to unity relative to densities inferred from radar experiments, implying a veneer of material over the asteroid surface with a density less than 1000 kg m−3. More data with better signal-to-noise and aspect coverage could improve these models and constrain physical properties of asteroid surface materials. This would also allow asteroids to be used as calibration sources with accurately known and stable, broadband fluxes at long wavelengths.  相似文献   

20.
碳质球粒陨石是太阳系中最原始的物质之一.通过对碳质球粒陨石的光谱分析,可以建立其与母体小行星之间的联系,有助于探测小行星表面物质成分、研究太阳系早期的演化历史.研究了6个CM2型碳质球粒陨石和11个煤炭样品(碳质球粒陨石所含有机质的地球类比物)可见-远红外谱段反射光谱特征,并分析了它们与有机组分的关系.结果表明,对于不同类型的煤样随着煤化程度的升高,各有机物碳氢基团的吸收峰深度逐渐降低, 3.41μm处脂肪族碳氢化合物的吸收深度与H/C比存在线性正相关,当H/C比小于0.55时, 3.41μm处无明显光谱吸收特征.在3–4μm区域, CM2陨石存在明显的脂肪族CH2、CH3吸收带,缺乏3.28μm芳香族CH吸收带,但在5–6.5μm区域存在微弱的芳香族C=C、CO吸收带,指示CM2碳质球粒陨石的有机组分含有脂肪族和芳香族.陨石红外光谱中3.28μm和5–6.5μm区域光谱特征不明显可能是因为在此波段区域存在含水矿物OH的重叠吸收或受到其他不透明矿物的影响,具体原因有待进一步研究.研究也说明,需要更长的波段范围才能够准确识别小天体有机质类型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号