首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the radio spectral indices of 23 Wolf–Rayet (WR) stars to identify the nature of their radio emission. We identify nine systems as non-thermal emitters. In seven of these systems the non-thermal emission dominates the radio spectrum, while in the remaining two it is of comparable strength to the thermal, stellar wind emission, giving 'composite' spectra. Among these nine systems, seven have known spectroscopic or visual binary companions. The companions are all massive O or early B-type stars, strongly supporting a connection between the appearance of non-thermal emission in WR stars and the presence of a massive companion. In three of these binaries, the origin of non-thermal emission in a wind-collision region between the stars has been well established in earlier work. The binary systems that exhibit only thermal emission are all short‐period systems where a wind-collision zone is deep within the opaque region of the stellar wind of the WR star. To detect non-thermal emission in these systems requires optically thin lines of sight to the wind-collision region.  相似文献   

2.
We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptotic giant branch phase. Two regions within the optical nebula are clearly detected in non-thermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf–Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned with any obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.  相似文献   

3.
The continuum emission of stellar flares in UV and visible bands can be enhanced by two or even three orders of magnitude relative to the quiescent level and is usually characterized by a blue colour. It is difficult for thermal atmospheric models to reproduce all these spectral features. If the flaring process involves the acceleration of energetic electrons which then precipitate downwards to heat the lower atmosphere, collisional excitation and ionization of ambient hydrogen atoms by these non-thermal electrons could be important in powering the continuum emission. To explore such a possibility, we compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the non-thermal effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough (for example, ℱ1∼1012 erg cm−2 s−1), the U -band brightening and, in particular, the U − B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux ℱ1≲1011 erg cm−2 s−1, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux, but it yields a spectral colour incomparable with observations. This implies that the non-thermal effects may play the chief role in powering the continuum emission in some stellar flares.  相似文献   

4.
We present 10-μm ISO -SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO -SWS spectrum reveals emission from highly ionized species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5 and 6.3 cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by ∼ 14 arcsec. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and non-thermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10 μm reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison with prior radio observations of hot stars such as O and B supergiants and Wolf–Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (τ ∼ 103 yr). The extended non-thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2–10 keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.  相似文献   

5.
We present new radio continuum data at four frequencies for the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and non-thermal radio emission and to determine the non-thermal spectral index distribution. This spectral index distribution in the galactic disc is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.  相似文献   

6.
Class II methanol masers are believed to be associated with high-mass star formation. Recent observations by Walsh et al. and Phillips et al. reported a very low detection rate of radio continuum emission toward a large sample of 6.7-GHz methanol masers. These results raise questions about the evolutionary phase and/or the mass range of the exciting stars of the masers. Here we report the results of a VLA search for 8.4-GHz continuum emission from the area around five Class II methanol masers, four of which were not detected by Walsh et al. at 8.6 GHz. Radio continuum emission was detected in all five fields although only two of the nine maser spot groups in the five fields were found to be superimposed on radio continuum sources that appear to be ultra-compact H  ii (UCH  ii ) regions. This suggests that continuum counterparts for some masers might be found in further surveys for which the sensitivity level is lower than  1 mJy beam−1  . Considering our results as well as observations from other studies of methanol masers we conclude that masers without radio continuum counterparts are most likely associated with high-mass stars in a very early evolutionary stage, either prior to the formation of a UCH  ii region or when the H  ii region is still optically thick at centimetre wavelengths. With one exception all maser spot groups in the five fields were found to be associated with mid-infrared objects detected in the Midcourse Space Experiment survey.  相似文献   

7.
We present Australia Telescope Compact Array observations towards six massive star formation regions, which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hypercompact H  ii regions. However, the properties of the ionized gas derived from the 19 to 93 GHz continuum emission and  H70α+ H57α  radio recombination line data show the majority of these sources are, in fact, regions of spatially extended, optically thin free–free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial filtering, poor surface brightness sensitivity and primary beam attenuation.
We consider the implications that a significant number of these extended H  ii regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that six contain previously undetected extended free–free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCH  ii region formation, they are, in fact, associated with extended H  ii regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ∼0.5 Jy) from free–free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ∼2.  相似文献   

8.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

9.
We have obtained infrared colors and limiting magnitudes from 1.25–4.8µm for a sample of 26 of the cm continuum radio sources located in the core of the Oph molecular cloud. Their colors demonstrate that the majority of the sources appear to be heavily reddened objects surrounded by circumstellar accretion disks. In these cases the radio emission most likely diagnoses accretion driven energetic outflow phenomena: either ionized winds or possibly synchrotron emission from shocked gas associated with stellar jets.  相似文献   

10.
In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.  相似文献   

11.
We have searched our previously published radio surveys of the Cygnus X region for faint radio point sources that may be associated with luminous stars of the Cyg OB2 association. Five positional coincidences have been found between stars and 1420 MHz radio sources. A particularly interesting example is the Wolf-Rayet star VCLS 146, which has shown a rapid change in 1420 MHz flux density. In addition, sensitive upper limits have been derived for the emission from 14 early-type stars, which help establish the time history of their non-thermal radio emission. Two radio features have been detected which have the properties of cometary HII regions, except that they are several arcminutes in size. Their detection provides evidence of recent star formation in Cyg OB2.  相似文献   

12.
We present the first detections of the black hole X-ray binary GRS 1915+105 at submillimetre (submm) wavelengths. We clearly detect the source at 350 GHz in two epochs, with significant variability over the 24 h between epochs. Quasi-simultaneous radio monitoring indicates an approximately flat spectrum from 2 to 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 and 350 GHz. The flat spectrum and correlated variability imply that the submm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these submm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc–jet connection in this source.  相似文献   

13.
High spatial resolution radio continuum and 6.67-GHz methanol spectral line data are presented for methanol masers previously detected by Walsh et al. (1997). Methanol maser and/or radio continuum emission is found in 364 cases towards IRAS -selected regions. For those sources with methanol maser emission, relative positions have been obtained to an accuracy of typically 0.05 arcsec, with absolute positions accurate to around 1 arcsec. Maps of selected sources are provided. The intensity of the maser emission does not seem to depend on the presence of a continuum source. The coincidence of water and methanol maser positions in some regions suggests there is overlap in the requirements for methanol and water maser emission to be observable. However, there is a striking difference between the general proximity of methanol and water masers to both cometary and irregularly shaped ultracompact (UC) H  ii regions, indicating that, in other cases, there must be differing environments conducive to stimulating their emission. We show that the methanol maser is most likely present before an observable UC H  ii region is formed around a massive star and is quickly destroyed as the UC H  ii region evolves. There are 36 out of 97 maser sites that are linearly extended. The hypothesis that the maser emission is found in a circumstellar disc is not inconsistent with these 36 maser sites, but is unlikely. It cannot, however, account for all other maser sites. An alternative model which uses shocks to create the masing spots can more readily reproduce the maser spot distributions.  相似文献   

14.
We present new radio and optical observations of the colliding-wind system WR 146 aimed at understanding the nature of the companion to the Wolf–Rayet (WR) star and the collision of their winds. The radio observations reveal emission from three components: the WR stellar wind, the non-thermal wind–wind interaction region and, for the first time, the stellar wind of the OB companion. This provides the unique possibility of determining the mass-loss rate and terminal wind velocity ratios of the two winds, independent of distance. Respectively, these ratios are 0.20±0.06 and 0.56±0.17 for the OB-companion star relative to the WR star. A new optical spectrum indicates that the system is more luminous than had been believed previously. We deduce that the 'companion' cannot be a single, low-luminosity O8 star as suggested previously, but is either a high-luminosity O8 star, or possibly an O8+WC binary system.  相似文献   

15.
We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6+O5.5 binary system with a period of about 21.9 days. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to γ-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative γ-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118. Based partly on data Obtained at the Observatoire de Haute-Provence, France.  相似文献   

16.
We have performed simultaneous X-ray and radio observations of 13 Galactic Centre low-mass X-ray binaries in 1998 April using the Wide Field Cameras on board BeppoSAX and the Australia Telescope Compact Array, the latter simultaneously at 4.8 and 8.64 GHz. We detect two Z sources, GX 17+2 and GX 5−1, and the unusual 'hybrid' source GX 13+1. Upper limits, which are significantly deeper than previous non-detections, are placed on the radio emission from two more Z sources and seven atoll sources. Hardness–intensity diagrams constructed from the Wide Field Camera data reveal GX 17+2 and GX 5−1 to have been on the lower part of the horizontal branch and/or the upper part of the normal branch at the time of the observations, and the two non-detected Z sources, GX 340+0 and GX 349+2, to have been on the lower part of the normal branch. This is consistent with the previous empirically determined relation between radio and X-ray emission from Z sources, in which radio emission is strongest on the horizontal branch and weakest on the flaring branch. For the first time we have information on the X-ray state of atoll sources, which are clearly radio-quiet relative to the Z sources, during periods of observed radio upper limits. We place limits on the linear polarization from the three detected sources, and use accurate radio astrometry of GX 17+2 to confirm that it is probably not associated with the optical star NP Ser. Additionally we place strong upper limits on the radio emission from the X-ray binary 2S 0921−630, disagreeing with suggestions that it is a Z-source viewed edge-on.  相似文献   

17.
We present a radio survey of X-ray sources in the Large and Small Magellanic Clouds with the Australia Telescope Compact Array at 6.3 and 3.5 cm. Specifically, we have observed the fields of five LMC and two SMC supersoft X-ray sources, the X-ray binaries LMC X-1, X-2, X-3 and X-4, the X-ray transient Nova SMC 1992, and the soft gamma-ray repeater SGR 0525-66. None of the targets are detected as point sources at their catalogued positions. In particular, the proposed supersoft jet source RXJ 0513-69 is not detected, placing constraints on its radio luminosity compared to Galactic jet sources. Limits on emission from the black hole candidate systems LMC X-1 and X-3 are consistent with the radio behaviour of persistent Galactic black hole X-ray binaries, and a previous possible radio detection of LMC X-1 is found to be almost certainly a result of nearby field sources. The SNR N49 in the field of SGR 0525-66 is mapped at higher resolution than it has been previously, but there is still no evidence for any enhanced emission or disruption of the SNR at the location of the X-ray source.  相似文献   

18.
The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosynchrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100 per cent circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a time-scale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provide us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 min. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre-main-sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high-sensitivity radio interferometers such as Square Kilometre Array can exploit.  相似文献   

19.
We describe a combined dynamic atmosphere and maser propagation model of SiO maser emission in Mira variables. This model rectifies many of the defects of an earlier model of this type, particularly in relation to the infrared (IR) radiation field generated by dust and various wavelength-dependent, optically thick layers. Modelled masers form in rings with radii consistent with those found in very long baseline interferometry (VLBI) observations and with earlier models. This agreement requires the adoption of a radio photosphere of radius approximately twice that of the stellar photosphere, in agreement with observations. A radio photosphere of this size renders invisible certain maser sites with high amplification at low radii, and conceals high-velocity shocks, which are absent in radio continuum observations. The SiO masers are brightest at an optical phase of 0.1–0.25, which is consistent with observed phase lags. Dust can have both mild and profound effects on the maser emission. Maser rings, a shock and the optically thick layer in the SiO pumping band at 8.13 μm appear to be closely associated in three out of four phase samples.  相似文献   

20.
We have used the Australia Telescope Compact Array (ATCA) to make observations of a sample of eight young ultra-compact H  ii regions, selected on the basis that they have associated class II methanol maser emission. We have made observations sensitive to both compact and extended structures and find both to be present in most sources. The scale of the extended emission in our sample is in general less than that observed towards samples based on IRAS properties, or large single-dish flux densities. Our observations are consistent with a scenario where extended and compact radio continuum emission co-exists within H  ii regions for a significant period of time.
We suggest that these observations are consistent with a model where H  ii evolution takes place within hierarchically structured molecular clouds. This model, which is the subject of an upcoming companion paper by Shabala et al., addresses both the association between compact and extended emission and the ultra-compact H  ii region lifetime problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号