首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Last-glacial paleoenvironments have been reconstructed from a pollen and charcoal record analyzed in organic sediments and dated between ca. 18,000 and >48,00014C yr B.P. The site is located near the village Catas Altas in the lower highland region of southeastern Brazil. The last-glacial landscape was covered by extensive areas of subtropical grasslands and small areas of gallery forests along the rivers, where tropical semideciduous forests and cerrado ecosystems exist today. The subtropical gallery forests were composed ofAraucariaforest trees such asAraucaria angustifolia, Podocarpus, Drimys, Ilex,andSymplocos.Paleofires were frequent. The record indicates that subtropical grassland vegetation, which today is found in patches on the highlands in southern Brazil (especially in the state of Santa Catarina), expanded from southern Brazil to southeastern Brazil, over a distance of more than 750 km, from latitudes of about 28° S to at least 20° S. The completely different last-glacial environment, in comparison to the present-day environment, reflects a dry and cold climate with strong frosts during the winter months. Temperatures of 5°–7°C below those of the present are inferred for the last glaciation.  相似文献   

2.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

3.
Zusammenfassung Admontit ist ein neues Magnesiumborat, das in der Gipslagerstätte Schildmauer bei Admont in der Steiermark (Österreich) in Vergesellschaftung mit drei weiteren neuen borhaltigen Mineralien sowie Gips, Anhydrit, Hexahydrit, Löweit, Quarz und Pyrit auftritt.Das Mineral bildet undeutlich ausgebildete farblose Kristalle von monokliner Symmetrie, die zum Teil nachc gestreckt und tafelig nach {100} sind. Keine Spaltbarkeit, Bruch muschelig, Härte wahrscheinlich 2–3,D gem .=1,82,D x =1,875g·cm–3;n =1,442±0,002,n =1,504±0,002, 2V 30°,r. AE(010),n c auf (010) ca. 45°. a 0=12,68,b 0=10,07,c 0=11,32 Å (alle Werte±0,02 Å),=109,68° (±0,1°),Z=2, RaumgruppeP21/c. Stärkste Linien des Pulverdiagramms: 12,08(9), 7,60(10), 3,93(8), 2,68(9). Formel: 2 MgO·6 B2O3·15 H2O. In Wasser wird Admontit langsam zersetzt. Erhitzungsversuche zeigten, daß das Gitter zwischen 100 und 200°C zerstört wird. Ein Teil des Wassers entweicht schon unterhalb 100°C, der Rest zwischen 150 und 350°C.
Admontite, a new borate mineral from the gypsum deposit Schildmauer near Admont in Styria (Austria)
Summary Admontite is a new magnesium borate found in the gypsum deposit of Schildmauer near Admont in Styria (Austria) in association with three other new borium-containing minerals and with gypsum, anhydrite, hexahydrite, löweite, quartz and pyrite.The mineral occurs in poorly developed colourless crystals of monoclinic symmetry, which in part are elongated along thec axis and flattened on {100}. No cleavage, fracture conchoidal, hardness probably 2–3,D meas .=1.82,D x =1.875g·cm–3.n =1.442±0.002,n =1.504±0.002, 2V 30°,r. AE(010),n c on (010) about 45°.a 0=12.68,b 0=10.07,c 0=11.32 Å (all±0.02 Å), =109.68° (±0.1°),Z=2,space groupP21/c. Strongest lines of the powder pattern: 12.08(9), 7.60(10), 3.93(8), 2.68(9). Chemical composition: 2 MgO·6 B2O3·15 H2O. Admontite is slowly decomposed in water. Investigations of the thermal behaviour show that the lattice breaks down between 100 and 200°C. Part of the water escapes already under 100°C, the rest between 150 and 350°C.


Mit 1 Abbildung

Herrn Univ. Prof. Dr.H. Meixner zum 70. Geburtstag gewidmet.  相似文献   

4.
The mathematical properties of the normalized diffusive hydrograph allow for easy determination of intrinsic basin characteristics. These include lag times between storm events and peak flow, recession rate, and the total, temporally integrated flow volume, all in terms of a single parameter, the basin time constant “b”. This simple function displays surprising fidelity to measured hydrographs of springs and hundreds of streams and small rivers. We explain this fidelity by showing that the curvature of the theoretical hydrograph matches that of the natural hydrographs better than several alternate models, and by demonstrating that the simple hydrograph function can be integrated over a range of time constants (0 to b max ) to represent the hierarchy of flow paths of varying lengths that exist in real watersheds. Surprisingly, the unwieldy analytical results from this integration are almost numerically indistinguishable from a simple hydrograph using a single, suitably-weighted average for the time constant. The peak flow times are shifted slightly. The accuracy with which the simple hydrograph approximates the integrated results for hierarchies of hydrographs representing individual flow paths explains why the former can realistically describe the discharge behaviors of complex natural watersheds.  相似文献   

5.
An investigation of glassy volcanics erupted within the last ten-million years along various segments of the mid-Atlantic Ridge and the East Pacific Rise has revealed major crustal compositional changes. The available data from the mid-Atlantic Ridge shows the existence of two petrological provinces: One, located between latitudes 33° and 53° N, is characterized by volcanics which have a tendency to be oversaturated ocean ridge basalts (OSORB) with respect to normative quartz; the second group of rocks, found between 25° S and 33° N, is generally composed of saturated ocean ridge basalts (SORB). In addition, the SORB volcanics have higher TiO2 (1.7±0.3%), higher Na2O (2.8±0.2%) and higher FeO*/MgO (1.36±0.2) values than do the OSORB types (with 1.1±0.2%, 2.2±0.2% and 1.22±0.2 for the TiO2, Na2O, and FeO*/MgO respectively), There is a correlation between the rate of crustal spreading and the compositional changes observed on the volcanics erupted along various segments of oceanic ridges. Slow-accreting plate boundaries having a total spreading rate of 2–3 cm/year are characterized by a low TiO2 content (1.1±0.2%), low FeO*/ MgO ratio (1.22±0.2) and a high an/an+ab ratio (0.62±0.05). Segments of fast-spreading ridges (total rate 11–13 cm/year) show a higher range of TiO2 (2.1±0.4%) and FeO*/MgO (1.6±0.4) and a lower range of the an/an + ab ratio (0.5±0.07). Ridge segments with a total spreading rate of 5–9 cm/year con sist of volcanics having intermediate values for the above parameters. Different degrees of partial melting of rising mantle material are suggested as a possible mechanism for explaining the compositional diversities encountered along oceanic ridge systems.Contribution n 677 du Département de Géophysique, Géologie, Géochimie Marines du C.O.B.  相似文献   

6.
To evaluate the applicability of P2O5 concentration in potassic alkali feldspar as a monitor of P2O5 in melt for undercooled systems, crystal–melt partitioning for P was evaluated via feldspar growth experiments in P-bearing ((3 wt% P2O5), water-saturated haplogranitic liquids at 200 MPa, with liquidus undercoolings (ΔT) of 25, 50, 100, 200, and 300°C. Increasing undercooling in the range ΔT=25–200°C shows an evolution of crystal morphologies, from euhedral and well-filled individuals at ΔT=25–50°C to radial clusters with increasingly skeletal habit at greater undercooling. Experiments at ΔT=100–200°C also document the development of P- (up to (9 wt% P2O5) and Si-enriched, more alkaline boundary layers adjacent to crystals. Experiments at ΔT=300°C show an additional change in crystallization fabric in which spherulites of skeletal crystals form in open (vapor) space created by the dissolution of bulk silicate, and compositional boundary layers are not observed. We interpret the changes in reaction products at ΔT=300°C to indicate conditions below a glass transition; hence, partition coefficients were not determined for this undercooling. Values of K d(P)Kfs/melt from experiments at ΔT=25–200°C, calculated from pairs of crystal and immediately adjacent liquid compositions (including boundary layers at higher undercooling), are mostly in the range of 0.25–0.55 and show no effective change with increased undercooling. Essentially no change in K d(P)Kfs/melt with undercooling apparently stems from an interplay between boundary layer composition and a change in the substitution mechanism for P in feldspar from AlPSi−2, common in peraluminous to metaluminous liquids near equilibrium, to increasing proportions of ([ ],P)(M+,Si)−1 with increased undercooling. Bulk glass and liquid beyond boundary layers in experiments with significant percentages of crystallization are homogeneous, and show pronounced fractionation primarily due to the removal of an orthoclase component. Because crystallization was still in progress in experiments with ΔT≤200°C, compositional homogeneity in the bulk liquid requires extremely rapid diffusion of most haplogranite components (Na, K, and Al), apparently resulting from chemical potential gradients stemming from the removal of components from the liquid by crystal growth. Similar homogeneity and bulk fractionation in experiments with ΔT=300°C requires rapid diffusive equilibration for the alkalis even at temperatures below an apparent glass transition. Unlike the haplogranite components, P is only concentrated in liquid boundary layers (ΔT≤200°C) or low-density aqueous vapor (ΔT=300°C) adjacent to crystals. Hence, the P2O5 contents of melt inclusions likely are not representative of bulk melt concentrations in significantly undercooled systems (ΔT≤50–100°C).  相似文献   

7.
The earthquake hazard in Jordan and its vicinity is assessed on the basis of probabilistic methods. For this purpose, an updated earthquake catalog is compiled which covers the period between AD 1–1989. The earthquakes lie between latitudes 27.0°-35.5° N and longitudes 32.0°-39.0° E. Thirteen seismic zones are defined on a regional seismic and tectonic map presented for the area. Point-source and line-source models are used. The seismic hazard parameters, namely, theb-parameter (of the Gutenberg-Richter relation),m 1 (the upper bound magnitude), and 4 (the annual rate of occurrence of earthquakes with local magnitudeM L 4.0) are calculated for each zone. The results of the seismic hazard assessment are displayed as iso-acceleration contours expected to be exceeded during typical economic life times of structures, i.e. 50 and 100 years. For each model, two seismic hazard maps are derived. In order to determine the importance of the South-eastern Mediterranean zone and the north part of the Red Sea zone from a seismic hazard point of view for Jordan, one seismic hazard map which corresponds to 50 years' economic life for every model, excluding the seismicity of these zones, is derived.  相似文献   

8.
Chemical data of 39 fresh basaltic glasses from the East Pacific Rise (EPR) between 6 and 30°S and Pb, Sr, and Nd isotopic compositions of 12 basalt glasses are presented. Major and trace element data indicate a wide compositional range, including primitive basalts (Mg#=0.67) and highly evolved FeTi-basalts (Mg#=0.34) [molMg/(Mg+Fe2+)]. The compositional range can be attributed to low-pressure fractional crystallization. Fractionation-corrected major element concentrations provide evidence for varying mantle melting conditions. Calculations of the melting conditions suggest melt generation in a rising upper mantle column between 20 and 10 kbar, at temperatures between 1430 and 1280°C, and total degrees of partial melting between 17 and 20% by weight. Leached and hand-picked basalt glasses display large variations in 87Sr/86Sr (0.70235–0.70270), 143Nd/144Nd (0.51312–0.51323), and 206Pb/204Pb (18.064–18.665), but are similar to other N-type MORB from the EPR. The isotopic ratios of basalts from 13 to 23°S show strong correlations and delineate two systematic trends. From 23 to 17°S, 87Sr/86Sr and Pb isotope ratios increase and 143Nd/144Nd decrease in agreement with previous results (Mahoney et al. 1989). A reverse trend is indicated by basalts from 17 to 13°S. However, K/Ti and (La/Sm)N continuously increase from 23 to 13°S. This opposite behavior indicates a recent decoupling of isotopic and minor element ratios in the mantle between 13 and 17°S. North of 13.5°S (Garrett Fracture Zone), isotopic data show no systematic variation with ridge location and display an overall weaker covariation. The results suggest that the isotopic variations and ridge segmentation appear to be unrelated and that major ridge offsets apparently coincide with changes in mantle melting conditions (P, T, F) (F, degrees of melting). There is no evidence for a systematic relationship between calculated melting conditions and second order ridge segmentation. Our isotopic data provide further evidence for regionally confined chemical variations in the mantle at 5 to 30°S. We interpret the isotopic trends as reflecting melting of distinct smallvolume and old enriched mantle components. In contrast, variations in trace elements are attributed to young mantle differentiation processes.  相似文献   

9.
Nitrogen loads into Lemon Bay, Florida were modeled to have increased ca. 59% between pre-development (i.e., 1850) estimates (5.3 kg TN ha−1 yr−1. and estimates for the year 1995 (8.4 kg TN ha−1 yr−1). By the year 2010, nitrogen loads are predicted to increase an additional 45% or 58%, depending upon progress being made toward replacing older septic tank systems with centralized sewerage (nitrogen loads of 12.2 and 13.3 kg TN ha−1 yr−1, respectively). Using 1995 estimates, nonpoint sources (stormwater runoff) are throught to be responsible for ca. 76% of the annual nitrogen load, followed by septic tank systems (14%), rainfall (10%), and an insignificant load from baseflow. Based on an empirically-derived nitrogen load:chlorophylla relationship developed for a portion of nearby Tampa Bay, a 45% increase in nitrogen loads into Lemon Bay could result in a 29% increase in annual average chlorophylla concentrations. Using the estimate of a 29% increase in future chlorophylla concentrations, an empirically-derived optical model for Lemon Bay suggests that light attenuation coefficients in the bay would increase ca. 9%, and the average depth limit ofThalassia testudinum in Lemon Bay would decrease by ca. 24%.  相似文献   

10.
Mid-Holocene stable isotope record of corals from the northern Red Sea   总被引:1,自引:0,他引:1  
We present a study based on X-ray chronologies and the stable isotopic composition of fossil Porites spp. corals from the northern Gulf of Aqaba (Red Sea) covering the mid-Holocene period from 5750 to 4450 14C years BP (before present). The stable oxygen and carbon isotopic compositions of five specimens reveal regular annual periodicities. Compared with modern Porites spp. from the same environment, the average seasonal δ 18O amplitude of the fossil corals is higher (by ca. 0.35–0.60‰), whereas annual growth rates are lower (by ca. 3.5 to 2 mm/year). This suggests stronger seasonality of sea surface temperatures and increased variability of the oxygen isotopic composition of the sea water due to changes in the precipitation and evaporation regime during the mid-Holocene. Most likely, summer monsoon rains reached the northern end of the Red Sea at that time. Average annual coral growth rates are diminished probably due to an increased input and resuspension of terrestrial debris to the shallow marine environment during more humid conditions. Our results corroborate published reports of paleodata and model simulations suggesting a northward migration of the African monsoon giving rise to increased seasonalities during the mid-Holocene over northeastern Africa and Arabia. Received: 4 January 1999 / Accepted: 13 September 1999  相似文献   

11.
Segmentation, propagation, and linkage of normal faults often occur in regions of active extension, and observations of the distribution and structural properties of segment boundaries can provide important insights for seismic hazard assessment. In this study, we carry out quantitative geomorphological analysis to evaluate the relative tectonic activity along the Langshan Piedmont Fault (LPF), which bounds the NW margin of the Hetao Graben, North China. On the basis of obtained morphometric indices (HI, BS, Smf, VF, SLK, and χ), tectonic knickpoint heights, footwall topography, and small unmanned aerial vehicles (sUAV)-based field observations, we demonstrate that: (i) The Langshan landscape is in a state of disequilibrium in response to active rock uplift and channel incision; (ii) The LPF consists of two major fault segments with lengths of 65 and 95 km, respectively, which likely have been linked with each other; (iii) Rupturing of the whole of one segment can generate an earthquake of Mw ~7.3–7.5, and earthquake magnitude may reach Mw ~7.8 if the entire fault trace of ~160 km is ruptured, posing a significant seismic risk in the western Hetao Graben. These findings would further our understanding of normal fault evolution through space and time in actively extending regions.  相似文献   

12.
Three basic dyke swarms of post-Ellesmerian (post-Early Carboniferous) age in Nansen Land (83° N, 43° W) are still not dated numerically, but cross-cutting relationships show Group 1 to be older than Group 2, while Group 3 is the freshest and likely the youngest. Group 1 (the most northerly swarm) strikes N-S; Group 2 NW-SE, and Group 3 (the most southerly swarm) E-W. From more than 200 dykes 234 specimens from 28 sites were investigated palaeomagnetically. Group 1 dykes show unexpected shallow inclinations with a cleaned mean direction of (Dm, Im) = (151°, –5.8°), N = 7, k = 18.5, 95 = 13.9°. They show hydrothermal alterations, some remagnetization by lightning, and the low inclination indicates a low palaeo latitude. The palaeopole is (Plat, Plon) = (8.9° S, 14.0° W) with (dp, dm) = (7°, 14°), and is close to the North American Early Carboniferous mean pole, suggesting a syn- or early late-tectonic dyke injection. The polarity is reverse. Groups 2 and 3 of presumed Cretaceous or Tertiary age show dominantly normal and reverse polarities, respectively. Their mean directions per polarity are well grouped, with (Dm, Im) = (–30.6°, 76.7°), n = 13, k = 191.4, 95 = 3.9°, and (Dm, Im) = (133.4°, –76.7°), n = 10, k = 87.5, 95 = 5.9°, respectively. They are antipodal within 95% significance, and combining both swarms gives (Dm, Im) = (–37.5°, 76.8°), n = 23, k = 124.3, 95 = 2.7°, corresponding to a mean pole of (Plat, Plon) = (70.0° N, 185.1° E) with (dp, dm) = (4.7°, 5.0°), for which the spline of Late Cretaceous-Tertiary poles for all Greenland indicates a palaeomagnetic age of 57 ± 10 Ma. This pole (in present-day coordinates) is very close to the Late Cretaceous North American pole, in accordance with the fact that Greenland belongs to the North American craton, and that the two younger swarms are essentially postdating the opening of Baffin Bay.  相似文献   

13.
Salt marsh ecosystems provide many critical ecological functions, yet they are subject to considerable disturbance ranging from direct human alteration to increased inundation due to climate change. We assessed emergent salt marsh plant characteristics in the Tuckerton Peninsula, a large expanse (~ 2000 ha) of highly inundated habitat along the southern New Jersey coast, USA. Key salt marsh plant parameters were monitored in the heavily grid-ditched northern segment, Open Marsh Water Management (OMWM) altered central segment, and the shoreline altered southern segment of the peninsula in the summer months of 2011 and 2013. Plant species composition and three metrics of abundance and structure (maximum canopy height, percent areal cover, and shoot density) were examined among marsh segments, along transects within segments, seasonally by month and between years. Despite seasonal or annual variability, the northern segment of the marsh differed in plant species composition from the central and southern segments. This difference was partly due to greater percent areal cover in the northern segment of upper marsh species such as Spartina patens and Distichlis spicata. S. patens also exhibited higher shoot densities in the northern segment than the central segment. Despite the higher abundance of upper marsh species, marsh surface elevations were lower in the northern segment than in the central or southern segments, suggesting the influence of altered hydrology due to human activities. Understanding current variation in the emergent salt marsh vegetation along the peninsula will help inform future habitat change in other coastal wetlands of New Jersey and the mid-Atlantic region subject to natural and anthropogenic drivers.  相似文献   

14.
Based on the in situ and temperature-quench X-ray measurements, the back transformation in the (Mg, Fe)2SiO4-spinels has been characterized in terms of the transformation temperature (T r ),mechanism and kinetics of the transformation, and of the end product(s), with specific emphasis on the effect of oxygen on this transformation. The in situ measurements were conducted to 900° C in vacuum (10-4 to 10-5 torr) and to 600° C in air using synchrotron radiation (SR) at Stanford Synchrotron Radiation Laboratory (SSRL). In the quench-type measurements, samples were heated in air to 1100° C, quenched and examined at ambient conditions using the conventional X-ray diffraction facilities. Important results are (1) in vacuum, all the spinels convert back into the olivine phase, with their T r decreasing with increasing iron content; (2) the spinel olivine back transformation is a nucleation and growth type of transformation and can be described quantitatively using the Avrami equation; (3) in air, the (Mg, Fe)2SiO4-spinels with 0.2 mole fraction Fe or more are all oxidized, and the composition and phase of the end products depend upon the temperature and the starting composition; and (4) the oxidation of the iron-rich (Mg, Fe)2SiO4-spinels in air occurs at 350–400° C, which is significantly lower than its T r ( 300° C) in vacuum.  相似文献   

15.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   

16.
A new mineralogic geothermometer based on the partitioning of Fe and Mn between garnet and ilmenite has been calibrated by reversal experiments in the P-T range 600–900° C, 2 and 5 kbars and for fO2=QFM. The results constitute a sensitive geothermometer applicable over a broad range of composition and conditions. Garnetilmenite thermometry has advantages relative to existing geothermometers because of its accurate calibration, marked temperature sensitivity and the chemical and structural simplicity of the crystalline solutions involved. Application to natural assemblages reveals that the garnet-ilmenite geothermometer yields temperatures that agree well with other estimates. The reactivity of, and relatively rapid Fe-Mn diffusion in ilmenite may lead to retrograde resetting of high temperature partition values, but these factors may be useful for estimating rock cooling rates. Analysis of the experimental data indicates minor positive deviations from ideality for Fe-Mn garnets and ilmenites. Absolute magnitudes of interaction parameters (W AB) derived from a regression analysis are subject to considerable uncertainty. The partition coefficient is, however, strongly dependent on the difference between solution parameters. These differences are well constrained with a magnitude of W FeMn ilmW FeMn gar 300 cal mol–1. The accuracy and applicability of garnet-ilmenite thermometry will improve with the availability of better thermodynamic data for garnet crystalline solutions.Abbreviations and symbols used in text R universal gas constant (cal/mol/°K) - T absolute temperature (°K or °C) - P pressure (kbars) - V 0 volume change of reaction (1) - H 1, T 0 standard state enthalpy change of reaction (1) at 1 bar and the T of interest, in cal/mole - S T 0 entropy change of reaction (1) at T of interest, in cal/mole/°K - G P,T 0 standard free energy change of reaction (1) at the T and P of interest, in cal/mole - distribution coefficient for Fe-Mn partitioning between garnet and ilmenite - K apparent equilibrium coefficient for reaction (1) - i j activity of component i in phase j - W A-B binary A-B interaction (Margules) parameter - gar garnet - ilm ilmenite - biot biotite - ol olivine - opx orthopyroxene  相似文献   

17.
Summary Experimental investigations on the Cu-Fe-substitution and the formation of a solid solution series in the system CuS2-FeS2 were carried out under hydrothermal conditions up to 350°C and 3 kb and by means of a piston cylinder apparatus at higher temperatures and pressures up to 900°C and 45 kb. Under dry conditions at 440°C and above 17 kb the system was found to be binary with a miscibility gap between an iron-rich phase near the FeS2 end-member and a coexisting copper-rich phase being the solvus composition of a homogeneity region from 75 to 100 mole% CuS2. This solvus of the copper rich phase was found to be almost independent of temperature and pressure up to 45 kb and 700°C. The solubility of CuS2 in FeS2 at 45 kb increases from 0.6 mole% at 700°C to 4.5 mole% at 900°C. Under hydrothermal conditions up to 3 kbars the solvus of metastable (Cu, Fe)S2 is strongly dependent on pressure only in the Cu-rich part of the system.
Zusammenfassung Stabilität der CuS2-FeS2 Mischreihe des Pyrit-Typs Experimentelle Untersuchungen zur Cu-Fe-Substitution und zur Bildung einer festen Lösung im System CuS2-FeS2 wurden mit der Hydrothermalsynthese bis 350°C und 3 kb und mit der Stempelzylindermethode bis 900°C und 45 kb durchgeführt. Unter trockenen Bedingungen bei 440°C und oberhalb 17 kb ist dieses System binär und weist eine Mischungslücke zwischen einer eisenreichen Phase nahe dem FeS2 Endglied und einer koexistierenden kupferreichen Phase mit der Solvuszusammensetzung eines Homogenitätsbereiches zwischen 75 und 100 mol% CuS2 auf. Dieser Solvus der kupferreichen Phase wurde bis 45 kb und 700°C nahezu druck- und temperaturunabhängig gefunden. Demgegenüber nimmt die Löslichkeit von CuS2 in FeS2 bei 45 kb von 0.6 mol% bei 700°C auf 4.5 mol% bei 900°C zu. Der Solvus der metastabilen (Cu, Fe)S2-Phasen, die bislang nur unter hydrothermalen Bedingungen synthetisiert werden können, zeigte bis 3 kbar nur im kupferreichen Teil des Systems eine starke Druckabhängigkeit.


With 4 Figures  相似文献   

18.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak PT conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength.  相似文献   

19.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

20.
Phase relations and mineral assemblages in the Ag-Bi-Pb-S system   总被引:1,自引:0,他引:1  
Phase relations within the Ag-Bi-S, Bi-Pb-S, and Ag-Pb-S systems have been determined in evacuated silica tube experiments. Integration of experimental data from these systems has permitted examination and extrapolation of phase relations within the Ag-Bi-Pb-S quaternary system. — In the Ag-Bi-S system liquid immiscibility fields exist in the metal-rich portion above 597±3°C and in the sulfur-rich portion above 563±3°C. Ternary phases present correspond to matildite (AgBiS2) and pavonite (AgBi3S5). Throughout the temperature range 802±2°C to 343±2°C the assemblage argentite (Ag2S) + bismuth-rich liquid is stable; below 343°C this assemblage is replaced by the assemblage silver + matildite. — Five ternary phases are stable on the PbS-Bi2S3 join above 400°C — phase II (18 mol-% Bi2S3), phase III (27 mol-% Bi2S3), cosalite (33.3 mol-% Bi2S3), phase IV (51 mol-% Bi2S3), and phase V (65 mol-% Bi2S3). Phase IV corresponds to the mineral galenobismutite and is stable below 750±3°C. Phases II, III, and V do not occur as minerals, but typical lamellar and myrmekitic textures commonly observed among the Pb-Bi sulfosalts and galena evidence their previous existence in ores. Phase II and III are stable from 829±6°C and 816±6°C, respectively, to below 200°C; Phase V, stable only between 730±5°C and 680±5°C in the pure Bi-Pb-S system is stabilized to 625±5°C by the presence of 2% Ag2S. Experiments conducted with natural cosalites suggest that this phase is stable only below 425±25°C in the presence of vapor. — In the Ag-Pb-S system the silver-galena assemblage is stable below 784±2°C, whereas the argentite + galena mineral pair is stable below 605±5°C. — Solid solution between matildite and galena is complete above 215±15°C; below this temperature characteristic Widmanstätten structure-like textures are formed through exsolution. Schematic phase relations within the quaternary system are presented at 1050°C, at 400°C, and at low temperature.
Zusammenfassung Die Phasenbeziehungen in den Systemen Ag-Bi-S, Bi-Pb-S und Ag-Pb-S wurden durch Versuche in evakuierten Quarzglasröhrchen bestimmt. Die Auswertung aller experimentellen Daten gestattete eine Extrapolation der Phasenbeziehungen im quaternären System Ag-Bi-Pb-S. — Im System Ag-Bi-S besteht ein Zwei-Schemlzenfeld im metallreichen Teil über 597±3°C und im schwefelreichen Teil über 563±3°C. Die ternären Phasen entsprechen den Mineralien Schapbachit (AgBiS2) und Pavonit (AgBi3S5). Zwischen 802±2°C und 343±2°C ist die Paragenese Silberglanz (Ag2S) + Bi-reiche Schmelze stabil; unterhalb 343°C wird sie jedoch ersetzt durch die Paragenese Silber + Schapbachit. — Fünf ternäre Phasen sind stabil im Schnitt PbS-Bi2S3 oberhalb von 400°C: Phase II (18 Mol-% Bi2S3), Phase III (27 Mol-% Bi2S3), Cosalite (33.3 Mol-% Bi2S3), Phase IV (51 Mol-% Bi2S3) und Phase V (65 Mol-% Bi2S3). Phase IV entspricht dem Mineral Galenobismutit und ist stabil unterhalb 750±3°C. Die Phasen II, III und V kommen zwar nicht in der Natur vor, jedoch weisen typische myrmekitische und lamellare Gefüge, die man häufig in Pb-Bi-Sulfosalzen und deren Verwachsungen mit Bleiglanz beobachtet, auf die ehemalige Existenz solcher Phasen in diesen Erzen hin. Die Phasen II und III sind stabil von 829±6°C bzw. 816±6°C bis unter 200°C. Die Phase V, die im reinen System Bi-Pb-S zwischen 730±5°C und 680±5°C auftritt, wird in Gegenwart von 2% Ag2S stabilisiert bis herab zu 625±5°C. Versuche mit natürlichen Cosaliten lassen darauf schließen, daß diese Phase nur unterhalb 425±25°C in Gegenwart einer Gasphase stabil ist. — Im System Ag-Pb-S ist die Paragenese Silber-Bleiglanz unterhalb von 784±2°C stabil, die Paragenese Silberglanz-Bleiglanz dagegen unterhalb 605±5°C. — Die Mischkristallreihe von Schapbachit und Bleiglanz ist vollständig oberhalb 215±15°C; unterhalb dieser Temperatur entstehen charakteristische Entmischungsgefüge ähnlich den Widmannstättenschen Figuren. Für das quaternäre System werden schematische Phasenbeziehungen für 1050°C, 400°C und eine noch tiefere Temperatur gegeben.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号