首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
The organic rich Safer shales exposed in the north-central part of onshore Marib-Shabowah Basin are evaluated and their depositional environments are interpreted. Total organic carbon contents (TOC) of the shales range from 1.02–16.8 wt%, and yield hydrogen index (HI) values ranging from 130 to 820 mg HC/g TOC, consistent with mainly Type II with minor contributions from Type I and mixed Types II–III kerogens. The Safer shale samples have vitrinite reflectance values in the range of 0.5–1.0 Ro%, indicating early mature to peak mature stage for oil generation. Tmax values range from 429–438 °C, which are in reasonably good agreement with vitrinite reflectance data. Kerogen microscopy shows that the Safer shales are characterized by high amounts of organic matter, consisting predominantly of yellow fluorescing amorphous organic matter and alginite of marine origin. This is supported by their high content of hydrogen rich Type II and I oil-prone kerogen.The biomarker distributions of the Upper Jurassic Safer extracts are characterized by dominant low to medium molecular weight compounds (n-C14 to n-C20), low Pr/Ph ratio (<1.0), high phytane/n-C18 ratios (0.82–2.68), and predominant regular sterane C27. All biomarker parameters clearly indicate that the organic matter was derived from marine algal inputs and deposited under anoxic (reducing) conditions. Hypersaline conditions also prevailed during deposition of these sediments, as indicated by the presence of gammacerane.  相似文献   

2.
Reconstruction of Mesozoic and Cenozoic sedimentary ‘cover’ on the Precambrian shield in the Lac de Gras diamond field, Northwest Territories, Canada, has been achieved using Cretaceous and early Tertiary sedimentary xenoliths and contemporaneous organic matter preserved in volcaniclastic sediments associated with late Cretaceous to early Tertiary kimberlite pipe intrusions, and in situ, Eocene crater lake, lacustrine and peat bog strata. Percent reflectance in oil (%Ro) of vitrinite within shale xenoliths for: (i) Albian to mid-Cenomanian to Turonian ranges from > 0.27 to 0.42 %Ro (mean = 0.38 %Ro), (ii) Maastrichtian to early Paleocene from 0.24 to < 0.30%; (iii) latest Paleocene to early middle Eocene 0.15 to < 0.23 %Ro (mean = 0.18 %Ro). These levels of thermal maturity are corroborated by Rock Eval pyrolysis Tmax (°C) and VIS region fluorescence of liptinites, with wavelengths of maximum emission for sporinite, prasinophyte alginite and dinoflagellates consistent with vitrinite reflectance of 0.20 to < 0.50 %Ro. Burial–thermal history modeling, constrained by measured vitrinite reflectance and porosity of shale xenoliths, predicts a maximum burial temperature for Mid to Late Albian strata (∼115 Ma) of 60 °C with ∼1.2 to 1.4 km of Cretaceous strata in the Lac de Gras kimberlite field region prior to major uplift and erosion, which began at 90 Ma. Late Paleocene to middle Eocene volcanic crater lake lacustrine to peat bog strata were only buried to a few hundreds of meters and are in a peat-brown coal stage of thermal maturation.  相似文献   

3.
Precise indices based on n-alkane signatures were developed in order to determine the sources and composition of sedimentary organic matter (SOM) in coastal systems. The Arcachon Bay (France), a well-studied temperate lagoon, was used as an example of a complex coastal system sheltering a wide diversity of OM sources. Three main groups of sources were well discriminated from their n-alkane signatures: seagrass (Zostera sp.) produced mainly n-C17, n-C19, n-C21, n-C23 and n-C25 alkanes, algae (Rhodophyta, Chlorophyta) produced n-C15 and n-C17 and the terrigenous input [Quercus sp., Spartina sp. and river suspended particulate OM (SPOM)] was characterized by n-C25, n-C27, n-C29, n-C31 and n-C33. From the above and literature n-alkane fingerprints, we developed a set of indices (n-alkane ratios) to quantify the contribution of these three major sources of the SOM. At the Arcachon Bay scale, they indicated that SOM was composed mainly of seagrass (ca. 53 ± 19%) and terrestrial (ca. 41 ± 17%) material, followed by algae (ca. 6 ± 9%). Moreover, the new n-alkane indices exhibited more relevant spatial patterns than classical ones – the TAR (C27 + C29 + C31/C15 + C17 + C19; terrestrial to aquatic ratio) and the Paq (C23 + C25/C23 + C25 + C29 + C31; aquatic plant %) – with a greater contribution from marine sources in the central part of the lagoon where a high density of Zostera seagrass was observed. Therefore, the development of precise indices adapted to the local diversity of OM sources is needed when using n-alkanes for quantifying the source composition of SOM in complex coastal systems.  相似文献   

4.
We characterized the compositions of organic compounds in a Cheremushka bog sediment core (deposited over the last 35 kyr), located at the eastern coast of Lake Baikal, to obtain basic information about the terrestrial organic matter (OM) which contributed to Lake Baikal sediments. The bog sediment was analyzed for the molecular composition of n-alkanes, lignin phenols and n-C24 to C30 alkanoic acids, as well as the carbon isotopic composition of plant wax derived n-C27 to C33 alkanes.Concentrations of lignin phenols [vanillyl (V) plus syringyl (S) phenols] normalized to total organic carbon (TOC) in the Holocene are twice those for the last glacial maximum (LGM), while concentrations of TOC-normalized n-C24 to C30 alkanoic acids do not change markedly in this period. Thus, the ratio of lignin phenols to n-C24 to C30 alkanoic acids increases from the LGM to the Holocene. This result is essentially consistent with pollen analysis indicating an expansion of woody plants in the Holocene and a prevailing herb-abundant environment for the LGM. The δ13C values of n-C27 to C33 alkanes (e.g. ?29‰ to ?33‰ for C31) indicate the presence of C3-dominant plants throughout the core.The contribution of terrestrial OM to Lake Baikal sediments was estimated using the biomarkers, on the assumption that the OM in the bog sediments is a representative of the terrestrial OM around the lake. Hence, the estimation using lignin phenol or n-C24 to C30 alkanoic acid parameters indicates that 11–24% of the TOC in the Academician Ridge sediments is land-derived for both the Holocene and the LGM, which is similar to the estimates from C/N values of bulk OM. However, the estimates for terrestrial OM using the n-C27 to C33 alkane parameter are generally higher than those using lignin phenol or n-C24 to C30 alkanoic acid parameters. The difference is thought to be associated with the difference in source and behavior of these biomarkers.  相似文献   

5.
The Sylhet Basin of Bangladesh is a sub-basin of the Bengal Basin. It contains a very thick (up to 22 km) Tertiary stratigraphic succession consisting mainly of sandstones and mudstones. The Sylhet succession is divided into the Jaintia (Paleocene–late Eocene), Barail (late Eocene–early Miocene), Surma (middle–late Miocene), Tipam (late Miocene–Pliocene) and Dupitila Groups (Pliocene–Pleistocene), in ascending order. The origin of the organic matter (OM) and paleoenvironment of deposition have been evaluated on the basis of C, N, S elemental analysis, Rock-Eval pyrolysis and gas chromatography–mass spectrometry (GC–MS) analysis of 60 mudstone samples collected from drill core and surface outcrops. Total organic carbon (TOC) content ranges from 0.11% to 1.56%. Sulfur content is low in most samples. TOC content in the Sylhet succession varies systematically with sedimentation rate, with low TOC caused by clastic dilution produced by high sedimentation rates arising from rapid uplift and erosion of the Himalaya.The OM in the succession is characterized by systematic variations in pristane/phytane (Pr/Ph), oleanane/C30 hopane, n-C29/n-C19 alkane, Tm/Ts [17α(H)-22,29,30-trisnorhopane/18α(H)-22,29,30-trisnorhopane] and sterane C29/(C27 + C28 + C29) ratios during the middle Eocene to Pleistocene. Based on biomarker proxies, the depositional environment of the Sylhet succession can be divided into three phases. In the first (middle Eocene to early Miocene), deposition occurred completely in seawater-dominated oxic conditions, with abundant input of terrestrial higher plants, including angiosperms. The second phase (middle to late Miocene) consisted of mainly freshwater anoxic conditions along with a small seawater influence according to eustasic sea level change, with diluted OM derived from phytoplankton and a lesser influence from terrestrial higher plants. Oxygen-poor freshwater conditions prevailed in the third phase (post-late Miocene). Planktonic OM was relatively abundant in this stage, while a high angiosperm influx prevailed at times. Tmax values of ca. 450 °C, vitrinite reflectance (Ro) of ca. 0.66% and methylphenanthrene index (MPI 3) of ca. 1 indicate the OM to be mature. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC content and predominantly terrestrial OM could have generated some condensates and oils in and around the study area.  相似文献   

6.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

7.
We determined biomarker concentrations and distributions for surface sediments from 54 sites in the Pearl River Estuary, China. We focus on a suite of four biomarker-based indicators for relative terrestrial to marine organic matter (OM) source: the branched-isoprenoid tetraether (BIT) index, the ratio of high/low molecular weight n-alcohols [(ΣC26–34/(ΣC16+18 + ΣC26–34)], an analogous ratio for n-fatty acids and the ΣC29-steroids/(ΣC29-steroids + brassicasterol) ratio. All four exhibit the same terrestrial to marine transition seen in previous bulk δ13C studies, but with an abrupt decrease in the relative terrestrial contribution across the delta front to pro-delta transition. Concentrations of terrestrially-derived biomarkers show no systematic decrease across the transition. Instead, the decrease in the proportion of terrestrial OM is due to a decrease in the sedimentation rate and associated terrestrial OM burial across the delta toe. This suggests that diagenetic controls on the fate of terrestrial OM, such as increased biodegradation where sedimentation rate is low, are subordinate to sedimentological processes. Biomarker-derived temperature values are cooler than expected for the lower Pearl River catchment, suggesting that the dominant component of the terrestrial OM is derived from the cooler upland regions of the catchment. The dominance of input from more distal terrain with greater topographic relief is evidence for the importance of geomorphological control on terrigenous OM transport. Collectively, the results demonstrate the importance of sedimentological processes in the supply, deposition and transport of terrestrial OM.  相似文献   

8.
We investigated the effect of ionizing radiation on organic matter (OM) in the carbonaceous uranium (U) mineralization at the Mulga Rock deposit, Western Australia. Samples were collected from mineralized layers between 53 and 58.5 m depths in the Ambassador prospect, containing <5300 ppm U. Uranium bears a close spatial relationship with OM, mostly finely interspersed in the attrinite matrix and via enrichments within liptinitic phytoclasts (mainly sporinite and liptodetrinite). Geochemical analyses were conducted to: (i) identify the natural sources of molecular markers, (ii) recognize relationships between molecular markers and U concentrations and (iii) detect radiolysis effects on molecular marker distributions. Carbon to nitrogen ratios between 82 and 153, and Rock–Eval pyrolysis yields of 316–577 mg hydrocarbon/g TOC (HI) and 70–102 mg CO2/g TOC (OI) indicate a predominantly lipid-rich terrigenous plant OM source deposited in a complex shallow swampy wetland or lacustrine environment. Saturated hydrocarbon and ketone fractions reveal molecular distributions co-varying with U concentration. In samples with <1700 ppm U concentrations, long-chain n-alkanes and alkanones (C27–C31) reveal an odd/even carbon preference indicative of extant lipids. Samples with ⩾1700 ppm concentrations contain intermediate-length n-alkanes and alkanones, bearing a keto-group in position 2–10, with no carbon number preference. Such changes in molecular distributions are inconsistent with diagenetic degradation of terrigenous OM in oxic depositional environments and cannot be associated with thermal breakdown due to the relatively low thermal maturity of the deposits (Rr = 0.26%). It is assumed that the intimate spatial association of high U concentrations resulted in breakdown via radiolytic cracking of recalcitrant polyaliphatic macromolecules (spores, pollen, cuticles, or algal cysts) yielding medium chain length n-alkanes (C13–C24). Reactions of n-alkenes with OH radicals from water hydrolysis produced alcohols that dehydrogenated to alkanones or through carbonylation formed alkanones. Rapid reactions with hydroxyl radicals likely decreased the isomerization of n-alkenes and decreased alkanone diversity, such that the alkan-2-one isomer is predominant. This specific distribution of components generated by natural radiolysis enables their application as “radiolytic molecular markers”. Breaking of C–C bonds through radiolytic cracking at temperatures much lower than the oil window (<50 °C) can have profound implications on initiation of petroleum formation, paleoenvironmental reconstructions, mineral exploration and in tracking radiolysis of OM.  相似文献   

9.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   

10.
The Sebahat (Middle Miocene to Early Pliocene) and Ganduman (Early Pliocene to Late Pliocene) Formations comprise part of the Dent Group. The onshore Sebahat and Ganduman Formations form part of the sedimentary sequence within the Sandakan sub-basin which continues offshore in the southern portion of the Sulu Sea off Eastern Sabah. The Ganduman Formation lies conformably on the Sebahat Formation. The shaly Sebahat Formation represents a distal holomarine facies while the sandy Ganduman Formation represents the proximal unit of a fluvial–deltaic system.Based on organic geochemical and petrological analyses, both formations posses very variable TOC content in the range of 0.7–48 wt% for Sebahat Formation and 1–57 wt% for Ganduman Formation. Both formations are dominated by Type III kerogen, and are thus considered to be gas-prone based on HI vs. Tmax plots. Although the HI–Tmax diagram indicates a Type III kerogen, petrographic observations indicate a significant amount of oil-prone liptinite macerals. Petrographically, it was observed that significant amounts (1–17% by volume) of liptinite macerals are present in the Ganduman Formation with lesser amounts in the Sebahat Formation.Both formations are thermally immature with vitrinite reflectance values in the range of 0.20–0.35%Ro for Ganduman Formation and 0.25–0.44%Ro for Sebahat Formation. Although these onshore sediments are thermally immature for petroleum generation, the stratigraphic equivalent of these sediments offshore are known to have been buried to deeper depth and could therefore act as potential source rocks for gas with minor amounts of oil.  相似文献   

11.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

12.
The Holocene successions of numerous shallow lakes located along the Coorong coastal plain in South Australia attest to the impact of rising sea level and changing climate on their depositional environment. Old Man Lake is one of the smallest perennial alkaline lakes in the region. Its succession comprises a basal lagoonal sand rich in humic organic matter (OM) overlain by a 3.7 m thick upward shoaling lacustrine mudstone. The latter features three discrete sapropel units deposited between 3270 and 4910 cal yr BP, a time of increasing aridity throughout southeastern Australia. A core taken from the lake’s eastern margin yielded sedimentological, mineralogical, geochronological and micropaleontological data. Coring at five other sites across the lake provided sections of the humic and sapropelic facies (n = 20) for total organic carbon and Rock–Eval analysis; isotopic characterization of their micritic carbonate (δ13Ccarb, δ18Ocarb) and co-existing OM (δ13Corg); and GC–MS and GC–irMS analysis of their free aliphatic hydrocarbons. For each ‘sapropel event’ high productivity of diatoms and green algae was the principal driver of the accumulation and preservation of OM in such high concentrations. The precursor algal blooms were likely triggered by the influx of fresh water following winter rainfall. The combination of kerogen hydrogen index and δ13Ccarbδ13Corg, previously employed to track secular changes in algal productivity and organic preservation, proved useful in identifying synchronous geographic differences in these processes across the lake. Highly branched isoprenoids (HBI: C25:1  C20:0) are prominent components of the aliphatic hydrocarbons in the sapropels, confirming the significant contribution of diatoms to their OM. The C isotopic signatures of the principal C25:1 HBI isomer and the co-occurring C23–C31 odd carbon numbered n-alkanes further document the non-uniformity of biomass preservation within and between the three sapropel units. The evidence from this study suggests that seasonal algal blooms and meromixis, although not necessarily an anoxic hypoliminion, were required for sapropel formation in the Holocene lakes of the Coorong region. Higher resolution sampling, dating and comparative analysis (microfossil, biomarker and isotopic) of these sapropels is required to clarify their potential significance as palaeoclimate proxies.  相似文献   

13.
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro.For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C.The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.  相似文献   

14.
24-n-Propylcholestane (24-npc), a C30 sterane compound derived from sterol precursors which are the major sterol constituents of modern pelagophyte microalgae, occurs in certain Neoproterozoic rocks and oils and throughout the Phanerozoic rock record. This broad distribution leads 24-npc to be widely considered a reliable indicator of open to partially restricted marine depositional conditions for source rocks and oils. Here we report two significant hiatuses in the occurrences of 24-npc in the Lower Paleozoic marine rock record: the first in the Middle–Late Cambrian and the second in the Late Ordovician–early Silurian transition for a range of lithofacies (carbonates and siliciclastic rocks), organic carbon contents (both organic-lean and organic-rich), and paleoceanographic environments (shelf and deeper water marine settings) and observed offshore of two paleocontinents, Laurentia and Baltica. The Ordovician–Silurian gap is at least 9 million years, and possibly up to 20 million years, in duration. Robust older occurrences of 24-npc steranes in some Neoproterozoic rocks and oils suggest that oceanographic conditions in our intervals of Lower Paleozoic time were unfavorable for the proliferation of pelagophyte algae as phytoplankton. Caution should therefore be applied when interpreting a lacustrine versus marine depositional environmental setting for source rocks and oils in these intervals of Early Paleozoic time using lipid biomarker assemblages.  相似文献   

15.
Moss covered, high latitude wetlands hold large amounts of terrestrial organic matter (OM), which may be vulnerable to expected climate warming. Molecular analysis of fluvially transported material from these regions can distinguish between different sources of terrestrial OM. Sphagnum moss may represent one of the major sources. This study aimed to quantitatively establish a molecular proxy for identifying Sphagnum-derived OM from high latitude peatlands in the sub-Arctic coastal ocean. We collected and analyzed Sphagnum species throughout northern Sweden and Finland. Results show that the C25/(C25 + C29) n-alkane ratio is most suitable for terrestrial OM source apportionment in these coastal regions since, compared to other n-alkane Sphagnum proxies, it shows (i) the least variation between species, (ii) the most constant values for different latitudinal regimes and (iii) the largest dynamic range to the higher plant end member in two-source mixing models. Application of the proxy to surface sediments and suspended particulate matter in the sub-Arctic northern Baltic Sea shows that 68–103% of the terrestrial OM fraction is derived from Sphagnum-rich peatland. We recommend that future studies on terrestrial OM fluxes into (sub-)Arctic regions should apply the C25/(C25 + C29) proxy to improve insight into the contribution of Sphagnum-derived terrestrial OM from climate-vulnerable, high latitude wetlands.  相似文献   

16.
《Chemical Geology》2006,225(1-2):77-90
Using density-gradient centrifugation, within-sample heterogeneity in C/N, δ13C, and δ15N was determined for a sample of the Blue Gem coal bed (Middle Pennsylvanian, Duckmantian (Westphalian B), Breathitt Formation) and related to maceral (petrographically identifiable organic component) composition. Relatively pure macerals were separated by density, with purities up to 99% in the case of vitrinite in fractions around 1.3 g/mL. Lower density fractions (∼ 1.2 g/mL) contain predominantly liptinite (∼ 75%) but also significant amounts of vitrinite (∼ 20%). Denser fractions contain increasing amounts of inertinite, with several fractions between 1.37 and 1.44 g/mL containing > 98% total inertinite. Within these denser fractions, semifusinite concentrated at lower densities than did fusinite. The separation of macerals by density allowed a more detailed evaluation of the isotopic composition of relatively pure macerals within a single coal. δ13C becomes increasingly heavy across the density gradient, with δ13C values being lightest in the liptinites, followed by vitrinite, and then semifusinite and fusinite; by contrast, δ15N becomes lighter across the same density range. C/H increases with density, reflecting a general decrease in aliphatic components and increase in aromatic components. C/N follows a similar pattern, ranging from < 40 to over 100, increasing significantly at densities > 1.32, the point at which inertinite macerals begin to predominate over vitrinite.The isotopic composition of macerals reflects chemical composition, which in turn reflects: 1) the original composition of plant tissues from which the macerals originated; 2) early diagenetic changes; and 3) changes during coalification. Macerals derived from lipid-rich precursor materials (liptinites) have more depleted δ13C values (∼ 2‰) relative to those derived from woody tissues (vitrinite). Fusinized material, derived from fossil charcoal, has δ13C values enriched by ∼ 0.5‰ compared with the vitrinite, consistent with the results from combustion experiments using modern plant tissues. Vitrinite fractions have enriched δ15N values relative to inertinite fractions, which may reflect early diagenetic changes in woody tissues involving preferential loss of 14N, possibly due to bacterial activity during the peat-forming stage. Due to the within-sample variability in carbon isotopic composition reported here, it is suggested that chemostratigraphic studies based on Type III kerogen (including both dispersed organic matter and coals) carefully consider the associated effects of variability in maceral composition.  相似文献   

17.
Tertiary coals exposed in the north-central part of onshore Sarawak are evaluated, and their depositional environments are interpreted. Total organic carbon contents (TOC) of the coals range from 58.1 to 80.9 wt. % and yield hydrogen index values ranging from 282 to 510 mg HC/g TOC with low oxygen index values, consistent with Type II and mixed Type II–III kerogens. The coal samples have vitrinite reflectance values in the range of 0.47–0.67 Ro %, indicating immature to early mature (initial oil window). T max values range from 428 to 436 °C, which are good in agreement with vitrinite reflectance data. The Tertiary coals are humic and generally dominated by vitrinite, with significant amounts of liptinite and low amounts of inertinite macerals. Good liquid hydrocarbons generation potential can be expected from the coals with rich liptinitic content (>35 %). This is supported by their high hydrogen index of up to 300 mg HC/g TOC and Py-GC (S 2) pyrograms with n-alkane/alkene doublets extending beyond C30. The Tertiary coals are characterised by dominant odd carbon numbered n-alkanes (n-C23 to n-C33), high Pr/Ph ratio (6–8), high T m /T s ratio (8–16), and predominant regular sterane C29. All biomarkers parameters clearly indicate that the organic matter was derived from terrestrial inputs and the deposited under oxic condition.  相似文献   

18.
Three sediment cores (50 cm depth) were collected at three different sites from a tidal flat estuary at Passagem Channel (Vitória, Espírito Santo State-Brazil) to evaluate the influence of recent urbanization processes on the deposition of organic matter (OM) in a complex polluted tropical estuary. In addition to geochronology (by excess 210Pb), the sources of natural and anthropogenic OM to the sediments were evaluated by total organic C (TOC – 14.29 ± 8.73, 30.43 ± 14.71 and 48.70 mg g−1 ± 25.46, respectively, for P1, P2 and P3), C/N molar ratio and lipid biomarkers (sterols and terpenoids). Taraxerol (3.10 ± 4.85, 9.71 ± 3.85 and 16.10 mg gTOC−1 ± 32.48 for P1, P2 and P3, respectively) and sitosterol (1.71 ± 2.72, 2.94 ± 6.41 and 4.07 mg gTOC−1 ± 4.41 for P1, P2 and P3, respectively) were the most abundant compounds in all cores, suggesting a major contribution of terrestrially-derived OM to the study region. Coprostanol levels and selected sterol index indicated significant contamination by fecal material. The organic geochemical indicators suggest that changes of OM reflect occupation and urbanization alteration processes around the Passagem Channel over the last 70 a, mainly the conversion of mangrove forest into urban areas, bridge building and Treatment Plant Station installation.  相似文献   

19.
Biomarker and n-alkane compound specific stable carbon isotope analyses (CSIA) were carried out on 58 crude oil samples from shallow water and deepwater fields of the Niger Delta in order to predict the depositional environment and organic matter characteristics of their potential source rocks. Using a source organofacies prediction approach from oil geochemistry, the presence in the western deepwater oils relatively abundant C27 steranes, C30 24-n-propyl cholestane, low oleanane index, relatively low pr/ph ratios, gammacerane, and positive to nearly flat C12–C30 n-alkane compound specific stable carbon isotope profiles, suggests that the source facies that expelled these oils contain significant marine derived organic matter deposited under sub-oxic and stratified water column conditions. This contrasts with the terrigenous organic matter dominated source rocks accepted for shallow water Niger Delta oils. Oils in the shallow water accumulations can be separated into terrigenous and mixed marine-terrigenous families. The terrigenous family indicates expulsion from source rock(s) containing overwhelmingly higher plant source organic matter (average oleanane index = 0.48, high C29 steranes) as well as having negative sloping n-alkane isotope profiles. Oxic source depositional conditions (pr/ph > 2.5) and non-stratified conditions (absence to low gammacerane content) are inferred for the terrigenous family. The mixed marine-terrigenous family has biomarker properties that are a combination of the deepwater and terrigenous shallow water oils. Bitumen extracts of the sub-delta Late Cretaceous Araromi Formation shale in the Dahomey Basin are comparable both molecularly and isotopically to the studied western deepwater oil set, but with an over all poor geochemical correlation. This poor geochemical match between Araromi shale and the western deepwater oils does not downgrade the potential of sub-delta Cretaceous source rock contribution to the regional oil charge in the deepwater Niger Delta.  相似文献   

20.
A laboratory study has been conducted to determine the best methods for the detection of C10–C40 hydrocarbons at naturally occurring oil seeps in marine sediments. The results indicate that a commercially available method using n-C6 to extract sediments and gas chromatography–flame ionization detection (GC–FID) to screen the resulting extract is effective at recognizing the presence of migrated hydrocarbons at concentrations from 50 to 5000 ppm. When non-biodegraded, the amount of oil charge is effectively tracked by the sum of n-alkanes in the gas chromatogram. However, once the charge oil becomes biodegraded, with the loss of n-alkanes and isoprenoids, the amount of oil is tracked by the quantification of the unresolved complex mixture (UCM). Gas chromatography–mass spectrometry (GC–MS) was also found to be very effective for the recognition of petroleum related hydrocarbons and results indicate that GC–MS would be a very effective tool for screening samples at concentrations below 50 ppm oil charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号