首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   

2.
Arid basins in the alpine-cold area have their unique environmental settings and special groundwater circulation system. Sources, components and their variation of recharge processes for most rivers and groundwater of seasonal scale are still unknown in response to climate warming. Stable H and O isotopes were sampled monthly in river water and groundwater, and water table fluctuations were monitored over a complete seasonal cycle from dry to wet season conditions in the Nalenggele River catchment in the western Qaidam Basin, China. The primary objectives of our study were to demonstrate and explain the mechanism governing the rapid circulation in the groundwater system. Distinct seasonal fluctuations in the water table with corresponding stable isotopic variations can be observed in the alluvial fan of the Nalenggele River catchment. The recharge mechanism is related to the coincidence of several favourable hydrological conditions including an abundant recharge water source from summer precipitation and glacial snow melt in the high Kunlun Mountains, large-scale active faults, a volcanic crater, and other macro-structures that act as favourable recharge conduits, a large hydraulic head, and the presence of >100 m of unconsolidated sand and gravel acting as the main aquifer. Abundant and rapid renewable groundwater resources are potential water sources for future development in the Qaidam Basin.  相似文献   

3.
The glaciers on Tibetan Plateau play an important role in the catchment hydrology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. In this study, the HBV light model, which adopts the degree‐day model for glacial melting, was employed to simulate the total runoff, the glacier runoff and glacier mass balance (GMB) of the Dongkemadi River Basin (DRB) at the headwater of the Yangtze River on the Tibetan Plateau, China. Firstly, the daily temperature and precipitation of the DRB from 1955 to 2008 were obtained by statistical methods, based on daily meteorological data observed in the DRB (2005–2008) and recorded by four national meteorological stations near the DRB (1955–2008). Secondly, we used 4‐year daily air temperature, precipitation, runoff depth and monthly evaporation, which were observed in the DRB, as input to obtain a set of proper parameters. Then, the annual runoff, the glacier runoff and GMB (1955–2008) were calculated using the HBV model driven by interpolated meteorological data. The calculated GMB fits well with the observed results. At last, using the temperature and precipitation predicted by climate models, we predicted the changes of runoff depth and GMB of the DRB in the next 40 years. Under all climate‐change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Streamflow generation was investigated using isotopic and geochemical tracers in semiarid, glacier-covered, montane catchments in the upper Shule River, northeastern Tibetan Plateau. Samples from stream water, precipitation, glacier meltwater, and groundwater were collected at the Suli and Gahe catchments along the Shule River, with an area of 1908 and 4210 km2, respectively. The samples were analysed for stable isotopes of water and major ions. Results of diagnostic tools of mixing models showed that Ca2+, Mg2+ and Cl, along with δ18O and δ2H, behaved conservatively as a result of mixing of three endmembers. The three endmembers identified by the mixing analysis were surface runoff directly from precipitation, groundwater, and glacier meltwater. Streamflow was dominated by groundwater, accounting for 59% and 60% of streamflow on average in the Suli and Gahe catchments, respectively, with minimum groundwater contribution in July (47% and 50%) and maximum contribution in October (69% and 70%). The contributions of surface runoff were slightly higher in the Suli catchment (25%) than in the Gahe catchment (19%). However, the contributions of glacier meltwater were higher in the Gahe catchment (21%) compared to the Suli catchment (17%), as a result of a higher percentage of glacier covered area in the Gahe catchment. This difference followed well the non-linear power–law trend of many glacier-covered catchments around the world. As glacier retreat continues in the future, the reduction of streamflow in glacier-covered upper Shule catchment likely will be accelerated and possibly elsewhere in the Tibetan Plateau. This study suggests that it is critical to define the turning point of an accelerated reduction in glacier meltwater for glacier-covered catchments around the world in order to better assess and manage water resources.  相似文献   

5.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River.  相似文献   

6.
Understanding climate change impacts on hydrological regime and assessing future water supplies are essential to effective water resources management and planning, which is particularly true for the Tibetan Plateau (TP), one of the most vulnerable areas to climate change. In this study, future climate change in the TP was projected for 2041–2060 by a high‐resolution regional climate model, RegCM4, under 3 representative concentration pathways (RCPs): 2.6, 4.5, and 8.5. Response of all key hydrological elements, that is, evapotranspiration, surface run‐off, baseflow, and snowmelt, to future climate in 2 typical catchments, the source regions of Yellow and Yangtze rivers, was further investigated by the variable infiltration capacity microscale hydrological model incorporated with a 2‐layer energy balance snow model and a frozen soil/permafrost algorithm at a 0.25°×0.25° spatial scale. The results reveal that (a) spatial patterns of precipitation and temperature from RegCM4 agree fairly well with the data from China Meteorological Forcing Dataset, indicating that RegCM4 well reproduces historical climatic information and thus is reliable to support future projection; (b) precipitation increase by 0–70% and temperature rise by 1–4 °C would occur in the TP under 3 RCPs. A clear south‐eastern–north‐western spatial increasing gradient in precipitation would be seen. Besides, under RCP8.5, the peak increase in temperature would approach to 4 °C in spring and autumn in the east of the TP; (c) evapotranspiration would increase by 10–60% in 2 source regions due to the temperature rise, surface run‐off and baseflow in higher elevation region would experience larger increase dominantly due to the precipitation increase, and streamflow would display general increases by more than 3% and 5% in the source regions of Yellow and Yangtze rivers, respectively; (d) snowmelt contributes 11.1% and 16.2% to total run‐off in the source regions of Yellow and Yangtze rivers, respectively, during the baseline period. In the source region of Yangtze River, snowmelt run‐off would become more important with increase of 17.5% and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5.  相似文献   

7.
Runoff generation and dynamics is an important issue in watershed and water resource management, but the mechanism in large scale is unclear and site-dependent. For this reason, spatial variations of δD and δ18O of river water and their sources within large-area of the Heishui Valley of the upper Yangtze River in western China were investigated during the wet season. A total 117 river water samples were collected at 13 sampling sites located at the junction of the principal river course and its tributaries. The results showed no spatial variations of either δD or δ18O values existed among tributary sampling sites A, B, E, F, H and I during the wet season, and significantly spatial variation occurred between tributary sampling sites A, B, E, F, H, I and site K; which indicated different proportions of rain entering river water should lead to spatial variation of water isotopes. The hydrograph separation analysis, based on the isotope data of river water, meltwater and rain water samples, showed the contribution of snow and glacier meltwater varied from 63.8% to 92.6%, and that of rain varied from 7.4% to 36.2%; which meant that snow and glacier meltwater was the main supplying water source of baseflow in the Heishui Valley. And the roles of glacier and snow meltwater should be significantly noticed in water resource management in this alpine valley at the rim of the Tibetan Plateau.  相似文献   

8.
The Jiangcang Basin is an important mining area of the former Qilian Mountain large coal base in Qinghai Province, and understanding the groundwater circulation mechanism is the basis for studying the hydrological effects of permafrost degradation in alpine regions. In this study, hydrogeochemical and multiple isotope tracer analysis methods are used to understand the chemical evolution and circulation mechanisms of the groundwater in the typical alpine region of the Jiangcang Basin. The diversity of the groundwater hydrochemistry in the study area reflects the complexity of the hydrogeochemical environment in which it is located. The suprapermafrost water and intrapermafrost water are recharged by modern meteoric water. The groundwater is closely hydraulically connected to the surface water with weak evaporation overall. The high δ34S value of deep groundwater is due to SO4 reduction, and SO42−-rich snow recharge with lixiviated sulfate minerals are the main controlling factor for the high SO42− concentration in groundwater. According to the multivariate water conversion relationships, it reveals that the river receives more groundwater recharge, suprapermafrost water is recharged by the proportion of meteoric water, which is closely related to the mountainous area at the edge of the basin, while intrapermafrost water is mainly recharged by the shallow groundwater. This study provides a data-driven approach to understanding groundwater recharge and evolution in alpine regions, in addition to having significant implications for water resource management and ecological environmental protection in coal bases of the Tibetan Plateau.  相似文献   

9.
The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.  相似文献   

10.
本文在对比了TRMM多卫星降水分析TMPA(TRMM Multi-satellite Precipitation Analysis)资料和中国643个气象站观测降水量时空分布的基础上,采用2002~2006年夏季TMPA每小时降水量资料,用合成分析和谐波分析的方法研究了青藏高原及其周边地区夏季降水量和降水频率的日变化特征.分析结果表明,平均降水量和降水频率日变化谐波分析的标准振幅显示出青藏高原地区夏季降水具有显著的日变化特征,高原中部地区对流活动日变化最强,其次是高原西南方向的印度半岛地区.谐波分析的位相表明降水量和降水频率最大值出现的时间具有选择性,高原中部降水量最大值多集中在傍晚前后,高原以东的四川盆地通常在夜晚,尤其是在后半夜达到最大值,而长江上游和中下游地区对流活动则分别在上午和下午最为活跃.青藏高原以东地区降水量日变化的位相明显不同于其他陆地地区,也不同于高原中部,具有自西向东传播的信号,四川盆地的夜雨现象可能是高原地区对流活动日变化自西向东传播的结果.  相似文献   

11.
Calcareous fens are species‐rich peatlands that are dependent on minerotrophic water sources for wetland functioning, with current conceptual models suggesting the water source is ubiquitously groundwater upwelling. By quantifying the water balance and subsurface water flow paths and fluxes over 3 growing seasons for calcareous fens in 3 different hydrogeomorphic settings (Riparian, Trough, and Basin), we show evidence that challenges this conceptual model. The Riparian Fen received an order of magnitude more water inputs than the Trough or Basin Fens and was dominated by stream recharge inputs and groundwater outputs. Precipitation and evaporation dominated the water balance of the Trough Fen whereas only the Basin Fen received sizeable groundwater inputs. Indeed, subsurface water fluxes were low at all fens due to weak hydraulic gradients and low saturated hydraulic conductivity in some areas of each wetland, though variations in growing season precipitation led to subsurface flow reversals in all 3 fens. Our results demonstrate the importance of understanding landscape position, or hydrogeomorphic setting, on calcareous fen hydrology for improving conservation, management, and restoration efforts of these important ecosystems.  相似文献   

12.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   

13.
In the southern San Juan Basin, New Mexico, strata of Permian and younger age dip gently toward the center of the basin. Most previous investigators believed that recharge to these strata occurred by precipitation on the outcrops and groundwater flowed downdip to the north and northeast. Recent water-level measurements in an undeveloped part of the basin near Prewitt, New Mexico, show that groundwater at shallow depths in alluvium and bedrock flows southward, opposite to the dip direction, and toward a major ephemeral drainage in a strike valley. North of this area, groundwater in deep bedrock aquifers does appear to flow northward. This information suggests that there are two groundwater circulation patterns; a shallow one controlled by topography and a deeper one controlled by geologic structure.Significant amounts of recharge to sandstone aquifers by infiltration through outcrops is unlikely due to the near-vertical exposures on cliffs, the gentle dip of the strata, and small annual precipitation. Numerical model results suggest that recharge to bedrock aquifers may be from downward leakage via aquitards over large areas and leakage from narrow alluvial aquifers in the subcrop area. The recharge mechanism is controlled by the hydraulic conductivity of the strata.As the flow path is controlled by hydraulic conductivity contrasts, geologic structure, and topography, contamination movement from surface impoundments is likely to be difficult to predict without a thorough hydrogeological site investigation.  相似文献   

14.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

15.
ABSTRACT

We investigated the isotopic composition of the Urumqi River and documented seasonal variability attributable to the mixing of various flow sources. Next, we applied these isotopic signals to partition the sources and studied their temporal variability in summer. The isotope hydrology separation results indicated that groundwater is the dominant streamflow source (approximately 62.7%) in the Urumqi River. Precipitation is an important source for the Urumqi River; approximately 19.1–20.7% of the runoff came from precipitation during summer and early autumn. In summer, approximately 21.1% of the runoff is derived from glacial meltwater. In summer, with the increasing distance to the glacier front, groundwater accounts for a larger and larger percentage of the river water, and the contributions of precipitation and glacial meltwater gradually diminish. Throughout 2012, the proportions of precipitation and glacial meltwater in the streamflow were 17.6% and 14.7%, respectively, and only 5% of the streamflow was derived from snowmelt.
Editor Z. W. Kundzewicz; Associate editor not assigned  相似文献   

16.
Glacier meltwater change in the north‐eastern edge of the Tibetan Plateau is greatly important for the projection of the impact of future climate change on local water resource management. Although the glaciated area is only approximately 4% of the Upper Reach of the Shule River Basin (URSRB), the average glacier meltwater contribution to river run‐off was approximately 23.6% during the periods 1971/1972 to 2012/2013. A new glacier melting module coupled with the macroscale hydrologic Variable Infiltration Capacity model (VIC‐CAS) was adopted to simulate and project changes in the glacier meltwater and river run‐off of the URSRB forced by downscaled output of the BCC‐CSM1.1(m), CANESM2, GFDL‐CM3, and IPSL‐CM5A‐MR models. Comparisons between the observed and simulated river run‐offs and glacier area changes during the periods 2000/2001, 2004/2006, 2008/2009, and 2012/2013 suggest that the simulation is reasonable. Due to increases in precipitation, the annual total run‐off is projected to increase by approximately 2.58–2.73 × 108 m3 in the 2050s and 0.28–1.87 × 108 m3 in the 2100s compared with run‐off in the 2010s based on the RCP2.6 (low greenhouse gas emission) and RCP4.5 (moderate greenhouse gas emission) scenarios, respectively. The contribution of glacier meltwater to river run‐off will more likely decrease to approximately 10% and less than 5% during the 2050s and 2100s, respectively.  相似文献   

17.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

18.
Studies on hydrological processes are often emphasized in resource and environmental studies. This paper identifies the hydrological processes in different landscape zones during the wet season based on the isotopic and hydrochemical analysis of glacier, snow, frozen soil, groundwater and other water sources in the headwater catchment of alpine cold regions. Hydrochemical tracers indicated that the chemical compositions of the water are typically characterized by: (1) Ca? HCO3 type in glacier snow zone, (2) Mg? Ca? SO4 type for surface runoff and Ca? Mg? HCO3 type for groundwater in alpine desert zone, (3) Ca? Mg? SO4 type for surface water and Ca? Mg? HCO3 type for groundwater in alpine shrub zone, and (4) Ca? Na? SO4 type in surface runoff in the alpine grassland zone. The End‐Members Mixing Analysis (EMMA) was employed for hydrograph separation. The results showed that the Mafengou River in the wet season was mainly recharged by groundwater in alpine cold desert zones and shrub zones (52%), which came from the infiltration and transformation of precipitation, thawed frozen soil water and glacier‐snow meltwater. Surface runoff in the glacier‐snow zone accounted for 11%, surface runoff in alpine cold desert zones and alpine shrub meadow zones accounted for 20%, thawed frozen soil water in alpine grassland zones accounted for 9% of recharge and precipitation directly into the river channel (8%). This study suggested that the whole catchment precipitation did not produce significant surface runoff directly, but mostly transformed into groundwater or interflow, and finally arrived in the river channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.  相似文献   

20.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号