首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来经济的快速发展导致铅锌矿产资源需求大量增加,使得我国的铅锌资源储备形势依然严峻。基于此,在全国开展铅锌矿产资源潜力评价工作,通过总结铅锌矿地质矿产成果,掌握铅锌矿产资源现状,预测未查明的铅锌矿产资源潜力,能够更好地满足未来铅锌矿产资源规划部署及合理利用的需要。在系统梳理全国29个省级行政单位铅锌矿产资源潜力评价成果的基础上,总结中国铅锌矿时空分布规律特征,结合传统的矿床模型以及全国重要矿产预测类型划分方案划分了铅锌矿矿产预测类型,将全国铅锌矿划分为9类矿产预测类型,分别是层控碳酸盐岩型(MVT)、碳酸盐岩细碎屑岩型(SEDEX)、砂砾岩型、沉积改造型、陆相火山岩型、海相火山岩型、岩浆热液型、夕卡岩型和风化壳型;分析了重要成矿区带的铅锌矿矿产预测类型、成矿时代,总结了各成矿区带主要类型铅锌矿区域预测要素,建立了主要类型铅锌矿区域预测模型。结合全国大地构造相图、全国成矿区带图以及全国各级预测区分布图等资料,划分了15个铅锌矿成矿省和47个Ⅲ级成矿区带,以成矿省(成矿区带)为主线开展矿产资源潜力评价和预测工作,为勘查部署提供依据。  相似文献   

2.
李彩凤 《江苏地质》2019,43(3):469-480
中条山铜矿集区位于华北克拉通南部,是我国重要的铜矿生产基地。中条山铜矿沿裂谷边界断裂带展布,新太古代末期—早中元古代经历了初始成矿期、沉积成矿期、区域变形变质成矿期和西阳河火山活动成矿期4个期次的富集作用,形成了复杂的成矿系统。在充分研究中条山成矿模式并分析成矿系统关键控矿因素的基础上,基于地质矿产空间数据库,以地质异常致矿理论为指导,采用GIS技术定量提取地层、构造、岩浆、地球物理和地球化学异常等多元综合找矿信息,建立中条山铜矿床资源定量预测评价模型;采用证据权重法对成矿预测因子进行赋值,根据后验概率值和成矿地质条件圈定了5个找矿远景区。研究成果为中条山区域矿产资源的进一步勘探和开发提供了依据。  相似文献   

3.
[研究目的]磷矿是具有战略意义的矿产资源,2014年至今,中国地质调查局组织编写的中国矿产地质志,全面描述了中国磷矿全貌及重要成矿规律,加强了对全国磷矿矿情的掌握.本文依托中国矿产地质志项目,系统总结了中国磷矿时空分布特征,圈定了磷矿找矿远景区和磷矿重点勘查区,对未来磷矿找矿工作有一定的参考价值.[研究方法]本文选取了...  相似文献   

4.
国土资源部为了基本摸清全国重要矿产资源“家底”,为矿产资源保障能力和勘查部署决策提供依据,开展了全国重要矿产资源潜力评价项目。菱镁矿是开展的25个重要矿种之一。本项目的实施,是我国矿产资源方面的一次重要的国情调查。本次工作以成矿地质理论为指导,深入开展区域成矿规律研究;充分利用地质、物探、化探、遥感和矿产勘查等综合成矿信息,建立典型矿床预测模型和区域预测模型,圈定成矿远景区和找矿靶区;充分应用现代矿产资源预测评价的理论方法和GIS评价技术,逐个评价其成矿远景区资源潜力;用地质体积等多元信息方法估算了地下2 000 m以浅的菱镁矿资源量,为科学合理地规划和部署矿产勘查工作提供依据。中国菱镁矿主要成矿时代为古元古代,成矿类型以沉积变质型为主,全国共有累计查明资源储量(矿石量)36.42亿t,主要分布于辽宁、山东和新疆。全国共圈定菱镁矿最小预测区129个,获2 000 m以浅预测资源量(矿石量)131亿t。全面总结并建立了菱镁矿典型矿床预测模型及区域预测模型,共划分菱镁矿成矿区带11个。  相似文献   

5.
基于GIS的多元信息成矿预测研究——以赤峰地区为例   总被引:18,自引:1,他引:17  
由于找矿难度越来越大,应用地质、地球物理、地球化学、遥感等资料进行综合信息成矿预测是目前找矿工作发展的一个重要趋势。GIS技术已成为多元信息深层次提取与综合,实施综合信息成矿预测的有效工具。文中以赤峰地区有色金属资源成矿预测研究为例,在总结区域成矿规律的基础上,以地质异常致矿理论为指导,利用GIS平台提取地质、地球物理、地球化学、遥感多元地质找矿信息,并利用航磁、重力资料进行隐伏构造、岩体等相关地质找矿信息的推断与解释,进一步丰富和深化成矿地质背景与深部找矿信息。在此基础上,建立多元地质异常信息找矿模型,采用证据权模型进行多元找矿信息的综合,对有利成矿区进行圈定。预测结果显示,在赤峰地区北部有三条北东-南西向的有利成矿区带,在南部有一条北西-南东向有利成矿区带,已知的86%的矿床或矿点位于这些有利区内,显示出良好的预测效果。本文的研究思路、方法为多元信息成矿预测研究提供了参考,其成果为赤峰地区的有色金属资源勘探开发提供了科学依据。  相似文献   

6.
The Sanjiang Tethyan domain in SE Asia is one of the most important mineral belts in China. Cu, Pb–Zn, Ag, Au and Sn are the most important resources in this domain, while the tungsten mineralization is poorly reported. In this study, we report on mineralogy in recent discovered Damajianshan (DMJS) tungsten (–Cu–As–Mo–Bi) polymetallic deposit in the southern part of Sanjiang Tethyan domain related to Triassic quartz porphyry. Studies have shown that besides common ore minerals, such as native bismuth, bismuthinite, ikunolite, some specific minerals of Pb–Bi- and Pb–Sb-sulphosalts (e.g. izoklakeite, bournonite, cosalite, and boulangerite) have also been found. Based on paragenetic mineral assemblages, fluid inclusions, and thermodynamic studies, the physicochemical conditions were evaluated for the entire metallogenic process. The sulfur fugacity (logfS2) ranges from − 9.7 to − 37 with ore-forming temperatures between 190 °C and 330 °C, and the oxygen fugacity (logfO2) ranges from − 37.5 to − 38.5 when the temperature is 250 °C. The sulfur fugacity and oxygen fugacity show strong fluctuations with broadly negative correlation, indicating that these variations in physicochemical conditions should be responsible for mineral assemblages, and are one of the most significant factors leading to the formation of the DMJS deposit. Our mineralogical studies provide new information for tungsten mineralization and further exploration of tungsten resources in the Sanjiang Tethyan mineralization domain.  相似文献   

7.
Three-dimensional (3D) district-scale geoscience information for the Luanchuan Mo district was integrated for understanding the development of its regional geology and ore-forming processes and for decision-making about potential targets for mineral exploration. The methodology and datasets used were: (1) construction of an initial geological model (25 km × 20 km × 2.5 km) using 1:10,000 scale geological map, nine geological cross-sections and gravity and magnetic data; (2) construction of three large-scale Mo deposits model (5 km × 4 km × 2.5 km) using 1:2000 scale geological and topographic maps, 288 boreholes (total core length of 158,700 m), and 32 1:2000 scale cross-sections; (3) 3D inversion of 1:25,000 scale gravity and magnetic data for identification metallogenic anomaly zones which are associated with Jurassic intrusions; (4) extraction of ore-controlling formation and sequence of the Luanchuan Group using the large-scale 3D models of Mo deposits and results of analysis of lithogeochemical samples from outcrops and borehole cores; (5) identification of ore-forming and ore-controlling faults using the large-scale 3D model of Mo deposits and mineralized Jurassic granite porphyry stocks; (6) boost weights-of-evidence and concentration–volume (C–V) fractal analyses to integrate metallogenic information and to identify and classify potential Mo targets. Four classes of exploration targets were identified using C–V modeling and 3D known orebodies model: the first and second class targets are mainly located in three large magma-skarn type deposit camps, occupying ~ 1.4 km3 with total estimated reserve of ~ 2.3 Mt; the third class targets, which are mainly located in Huangbeiling and Yuku deposit camps comprising concealed magma-skarn type deposits, occupy ~ 2.8 km3 and represent a new target exploration zone in the Luanchuan district; the fourth class targets, which are located in the Huoshenmiao, Majuan, and Daping zones, occupy ~ 15 km3 and represent potential mineral resources with likely similar orebody features as the Yuku deposit.  相似文献   

8.
The paper presents new isotope geochronological data for several mineral deposits, ore occurrences, and related igneous bodies (plutons and dikes) in the Verkhoyansk-Kolyma folded area, eastern Yakutia. Twenty-one 40Ar/39Ar mica and four U-Pb zircon dates provide the first age constraints on key metallogenic units in the area. The dating results allow correlation between tectonic, magmatic, and metallogenic events. The sampled mineral deposits within the Adycha-Taryn fault zone in the southeastern Verkhoyansk-Chersky orogen apparently formed at the Jurassic-Cretaceous boundary during the final phase of the collision between the Siberian (North Asian) craton and the Kolyma-Omolon microcontinent (Kupol’noe deposit and the early metallogenic pulse of the Malotarynskoe deposit, ~ 143-144 Ma) and in the latest Early Cretaceous, in the beginning of the orogen collapse (Tallalakh and Dora-Pil’ deposits and the Malotarynskoe late metallogenic pulse, ~ 126 Ma). According to the suggested new classification of metallogenic units, these deposits belong to the Late Jurassic-Early Cretaceous Yana-Kolyma metallogenic belt. The Kyuchus deposit (~ 106 Ma), the Deputatsky ore cluster (~ 106-113 Ma), and the Khotoidokh deposit (~ 116 Ma) in the northern Verkhoyansk-Kolyma folded area belong to the North Verkhoyansk metallogenic belt. Their origin was associated with accretional and collisional processes that produced the Novosibirsk-Chukotka orogen in the middle Cretaceous. The Mangazeya ore cluster (~ 100 Ma, Early-Late Cretaceous boundary) in the southwestern end of the North Tirekhtyakh magmatic transverse belt belongs to the West Verkhoyansk metallogenic belt. The Nezhdaninskoe, Zaderzhnoe, Kurum, and Kuta deposits of the South Verkhoyansk area (~ 125-120 and ~ 100-95 Ma) can be joined into a single Verkhoyansk-Okhotsk metallogenic belt. The belt resulted from accretion and collision along the East Asian active continental margin and the related formation of the South Verkhoyansk orogen in the Early Cretaceous.  相似文献   

9.
The western Tianshan metallogenic belt is one of the most significant polymetallic iron metallogenic belts in China. Important advances have been achieved recently in iron exploration in the Awulale Mountain in western Tianshan, China. These newly-discovered iron deposits are mainly hosted in the basic-medium andesitic lavas and volcaniclastics, often comprising a number of high-grade ores. Magnetite is predominated in ore mineral assemblages, and pyrite, chalcopyrite, pyrrhotite or sphalerite increase in certain deposits. Wallrock alterations are intensively developed, exemplified as sodic–calcic and potassic alterations which display in different patterns as country rocks and ore-controlled structures vary. Skarn assemblages are commonly developed in ore districts like Beizhan, Dunde and Chagangnuoer, and pyroxene + albite + K-feldspar  epidote + actinolite alterations are dominated around ore bodies in Zhibo deposit, whereas the Shikebutai deposit develops alteration assemblages comprising of jasper, barite, sericite, and chlorite. Thus, iron deposits can be divided into three types including volcanic-sedimentary type, volcanic magmatic-hydrothermal type and iron skarn type. Our preliminary interpretation about the tectonic background of this iron mineralization in this area is in the late stage of a collisional–accretional orogenic belt around Carboniferous, with some extrusional–extensional tectonic transition locally. Iron mineralization is likely to have a close genetic relationship with volcanic–subvolcanic activity, syn- or slightly post- the volcanism which took place besides continental arc. Volcanic eruption contributes to majority of mineralizing iron, with minor extracted from hydrothermal replacement from wall rocks.  相似文献   

10.
矿床模型综合地质信息预测技术研究   总被引:26,自引:2,他引:26  
随着中国国民经济持续快速发展,中国对矿产资源的需求呈现了快速增长的趋势,资源短缺已经成为制约中国经济又好又快发展的主要瓶颈之一。为了解决矿产资源短缺问题,对陆地近地表未查明矿产资源潜力的区位、数量和质量的评价工作已经成为当前十分迫切的任务。文章对矿床模型综合地质信息预测技术体系进行了详细、系统的介绍。该体系以地球动力学、成矿动力学和成矿系列理论为指导,深入开展区域地质构造研究,最大限度地分析地质构造的成矿信息,以各级成矿区带为单元,划分主要矿产的矿床预测类型,建立矿床模型,总结区域成矿系列。全面利用物探、化探、遥感等资料所显示的地质找矿信息,运用体现地质成矿规律内涵的预测技术,全面、全过程应用空间数据库及GIS技术,在圈定成矿预测区的基础上估计潜在资源量。  相似文献   

11.
中国钨矿成矿地质特征与资源潜力分析   总被引:2,自引:0,他引:2  
钨矿是中国传统优势矿种,前人在钨矿成矿理论方面积累了非常丰富的研究成果。然而,随着近年来在江西、云南和新疆等地取得的多项钨矿重大找矿突破,对原有的钨成矿带地质认识提出了挑战,急需进一步分析和总结其地质特征、成矿规律和资源潜力,为今后地质找矿工作提供理论指导。文中采用矿床模型综合地质信息预测方法,在各省区钨矿资源潜力预测成果的基础上,以MapGIS为平台,进行数据库汇总与综合分析研究。首先,基于全国1 538处钨矿产地数据的统计分析,初步总结了中国钨矿时空分布特征,以及岩浆岩、构造和地层等控矿因素。其次,根据钨矿床及预测区的空间分布和大地构造单元,划分了56个钨矿成矿区带。再次,将钨矿的预测类型划分为石英脉型、夕卡岩型、斑岩型、云英岩型、陆相火山岩型、沉积变质型、层控夕卡岩型和砂矿型,并建立了主要钨矿类型的预测模型。最后,在全国范围累计圈定的1 357个最小预测,累计预测资源量(WO3)2 973×104 t。根据钨矿区域成矿特征,将最小预测区归并为461个二级预测区,并进一步合并为118个钨矿三级预测区,其中,找矿潜力大的河南卢氏-栾川、新疆白干湖、湖南香花岭-瑶岗仙、甘肃野马滩-干巴河脑、江西坪背山-八仙脑和大湖塘等6个三级预测区可优先部署钨矿勘查工作。  相似文献   

12.
In this research, we conduct a case study of mapping polymetallic prospectivity using an extreme learning machine (ELM) regression. A Quad-Core CPU 1.8 GHz laptop computer served as hardware platform. Almeida's Python program was used to construct the ELM regression model to map polymetallic prospectivity of the Lalingzaohuo district in Qinghai Province in China. Based on geologic, metallogenic, and statistical analyses of the study area, one target and eight predictor map patterns and two training sets were then used to train the ELM regression and logistic regression models. ELM regression modeling using the two training sets spends 61.4 s and 65.9 s; whereas the logistic regression modeling using the two training sets spends 1704.0 s and 1628.0 s. The four trained regression models were used to map polymetallic prospectivity. Based on the polymetallic prospectivity predicted by each model, the receiver operating characteristic (ROC) curve was plotted and the area under the curve (AUC) was estimated. The ROC curves show that the two ELM-regression-based models somewhat dominate the two logistic-regression-based models over the ROC performance space; and the AUC values indicate that the overall performances of the two ELM-regression-based models are somewhat better than those of the two logistic-regression-based models. Hence, the ELM-regression-based models slightly outperform the logistic-regression-based models in mapping polymetallic prospectivity. Polymetallic targets were optimally delineated by using the Youden index to maximize spatial association between the delineated polymetallic targets and the discovered polymetallic deposits. The polymetallic targets predicted by the two ELM-regression-based models occupy lower percentage of the study area (2.66–2.68%) compared to those predicted by the two logistic-regression-based models (4.96%) but contain the same percentage of the discovered polymetallic deposits (82%). Therefore, the ELM regression is a useful fast-learning data-driven model that slightly outperforms the widely used logistic regression model in mapping mineral prospectivity. The case study reveals that the magmatic complexes, which intruded into the Baishahe Formation of the Paleoproterozoic Jinshuikou Group or the Carboniferous Dagangou and Shiguaizi Formations, and which were controlled by northwest-western/east-western trending deep faults, are critical for polymetallic mineralization and need to be paid much attention to in future mineral exploration in the study area.  相似文献   

13.
The Song Hien rift basin is an important metallogenic area in NE Vietnam. This domain consists mainly of Triassic sulfide-rich black shale beds, which play a role as a sedimentary host for various mineral systems such as antimony, mercury and gold-sulfide deposits. Most of gold deposits are hosted in carbonaceous sedimentary rocks, however some deposits, which have similar characteristics, are hosted in fine-grained mafic magmatic rocks. An Ar-Ar isotopic dating of hydrothermal sericite from the sedimentary hosted Bo Va and Khung Khoang gold deposits and intrusion hosted orogenic Hat Han gold deposit yields plateau ages of 184.8 ± 2.1 Ma, 211.63 ± 2.3 Ma, and 209.12 ± 2.3 Ma, respectively. The obtained Ar-Ar ages convincingly show that the orogenic gold deposits in the Song Hien domain were formed in Late Triassic to Early Jurassic, while the age of the Bo Va deposit is at least older than 184.8 ± 2.1 Ma. Loss of argon by volume diffusion, supported by previously reported mineralogical and isotopic features of the Bo Va deposit may suggest that the Jurassic-Cretaceous (Yanshanian) tectonothermal events overprinted some deposits in the Song Hien domain. Formation of gold deposits in the Song Hien domain is linked to the same tectonic event as the Carlin-like gold deposits in SW China and is associated with an extensional tectonic regime that followed continental collision between the Indochina and South China Blocks. The similarity in geology setting and mineral composition of gold deposits of the Song Hien domain and the Golden Triangle region, as well as timing and kinematics of deformation, magmatic features, and stratigraphic sequence and bulk architecture, lead to conclusion that NE Vietnam and SW China is a single metallogenic zone. The study of gold deposits in Vietnam will provide a new data on the metallogenic history of this important part of SE Asia.  相似文献   

14.
The southern North China craton hosts numerous world-class porphyry Mo and Pb-Zn-Ag vein deposits. Whether or not the Pb-Zn-Ag veins are genetically associated with the porphyry Mo system remains contentious. Here we focus on the genetic relationships between the Sanyuangou Pb-Zn-Ag vein deposit and the world-class Donggou porphyry Mo deposit, and discuss the potential implications from the spatial and temporal relationships between porphyry and vein systems in the southern North China craton.At Sanyuangou, vein-hosted sulfide mineralization mainly comprises pyrite, sphalerite, and galena, with minor chalcopyrite, pyrrhotite, bornite, tetrahedrite, covellite, polybasite and argentite. The mineralization is hosted by a quartz diorite stock, which has a zircon U-Pb age of 1756 ± 9 Ma. However, sericite from alteration selvages of Pb-Zn-Ag sulfide mineralization yields a well-defined 40Ar/39Ar plateau age of 115.9 ± 0.9 Ma. Although nominally younger, the sericite 40Ar/39Ar age is similar to the age of the nearby Donggou porphyry Mo deposit (zircon U-Pb age of 117.8 ± 0.9; molybdenite Re-Os ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma). Pyrite from Donggou has elevated contents of Mo and Bi, whereas pyrite from Sanyuangou is enriched in Cu, Zn, Pb, Ag, Au, and As. This trace element pattern is consistent with metal zonation typically observed in porphyry related metallogenic systems. Pyrite grains from Sanyuangou have lead isotopes overlapping those from Donggou (17.273–17.495 vs. 17.328–17.517 for 206Pb/204Pb, 15.431–15.566 vs. 15.408–15.551 for 207Pb/204Pb, and 37.991–38.337 vs. 38.080–38.436 for 208Pb/204Pb). Collectively, the geological, geochronological, and geochemical data support a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit and confirm that the Pb-Zn-Ag veins and the Donggou Mo deposit form a porphyry-related magmatic-hydrothermal system.Given the widespread Pb-Zn-Ag veins and Mo mineralized porphyries in many districts of the southern North China craton, the model derived from this study has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.  相似文献   

15.
Cobalt-rich crusts on seamounts potentially have the economic value of multiple metals. In the field of exploration, it is important to perform quantitative evaluations of mineral resources and delineate promising areas in survey regions for future mining. Accordingly, this study, based on prior knowledge, develops an integrated method to quantitatively evaluate mineral resources of cobalt-rich crusts on seamounts and gives an application example to demonstrate this method. The method includes four steps: first, defining units with certain areas and shapes on the target seamount (a 20 km2 square block in the application example) and estimating characteristic values of the cobalt-rich crust for each unit with known geological survey data using a space interpolation method such as Kriging; second, presenting several model algorithms, i.e. Regional Coverage of Crusts, Suitable Slope Percentage for Mining and Fitting Area on Slopes, to extract the corresponding regional metallogenic factors for each unit by inputting regional surveying data (such as bathymetry data) into these models; third, considering both the features and regional metallogenic factors of cobalt-rich crusts in each unit to estimate their distribution of mineral resources on the entire seamount; and last, according to the distribution of the mineral resources and international social and economic requirements (such as the regulations of the International Seabed Authority), delineating a promising area for future mining.  相似文献   

16.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. Over 100 thrust-controlled, sediment-hosted, Himalayan base metal deposits have been discovered in this basin, including the largest sandstone-hosted Pb–Zn deposit in the world (Jinding), and several Cu ± Ag ± Co deposits (Baiyangping, Baiyangchang and Jinman). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7000 t Ag, are mainly hosted in Meso-Cenozoic mottled clastic rocks, and strictly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the Lanping basin.To define the metallogenic history of the study area, we dated nine calcite samples associated with copper sulfides from the Jinman Cu deposit by the Sm–Nd method and five molybdenite samples from the Liancheng Cu–Mo deposit by the Re–Os method. The calcite Sm–Nd age for the Jinman deposit (58 ± 5 Ma) and the molybdenite Re–Os age for the Liancheng deposit (48 ± 2 Ma), together with previously published chronological data, demonstrate (1) the Cu–Ag mineralization in the western Lanping basin mainly occurred in three episodes (i.e., ∼56–54, 51–48, and 31–29 Ma), corresponding to the main- and late-collisional stages of the Indo–Asian orogeny; and (2) the Pb–Zn–Ag (±Cu) mineralization in the eastern Lanping basin lacked precise and direct dating, however, the apatite fission track ages of several representative deposits (21 ± 4 Ma to 32 ± 5 Ma) may offer some constraints on the mineralization age.  相似文献   

17.
硫是化学工业最重要的基本原料之一,主要用于生产化肥。我国硫矿资源工业开发利用的主要为硫铁矿和伴生硫。2007-2013年,中国地质调查局实施了全国化工矿产资源潜力评价项目,完成了全国硫矿成矿规律及预测研究,编制了相关图件,建设了数据库,取得了阶段性的成果。文章在以往研究和省级硫矿资源潜力评价成果的基础上,总结了全国硫矿时空分布特征,划分了成矿区带和成矿类型,建立了典型矿床和预测工作区的预测模型,最后对全国硫矿资源潜力进行了分类评价汇总。结果表明,全国共有硫矿床、矿点、矿化点共1 437处,其中硫铁矿1 418处,自然硫矿19处。成矿时代跨度为太古宙晚期-新生代,以元古宙硫矿储量最大。全国共划分为46个Ⅲ级硫矿成矿区带和17个矿集区;划分了沉积变质型、沉积型(海相、煤系)、岩浆热液型、海相火山岩型、陆相火山岩型、自然硫型6种预测类型和17个矿床式;梳理了6种预测类型典型硫矿床的预测要素和预测模型。全国共划分沉积变质型硫铁矿预测工作区20个,沉积型硫铁矿58个,岩浆热液型68个,海相火山岩型12个,陆相火山岩型9个,自然硫矿5个。全国共圈定硫矿3级预测区274个,其中硫铁矿268个,自然硫矿6个。全国硫铁矿硫铁矿和自然硫资源总量分别为241.35亿t和5.67亿t,其中预测资源量分别为184.57亿t和2.32亿t。根据成矿地质条件、矿床地质特征、矿石选冶性能、资源量可靠程度,文中遴选出21个硫矿优先勘查区,预测自然硫资源量2 229.3万t(S),硫铁矿50.58亿t(矿石)。该区成矿地质条件好,找矿潜力大,有一定的工作基础,已知矿床深边部等近期可优先安排勘查工作的预测区,远景好时可作为整装勘查基地。  相似文献   

18.
The Xitian tungsten–tin (W–Sn) polymetallic deposit, located in eastern Hunan Province, South China, is a recently explored region containing one of the largest W–Sn deposits in the Nanling W–Sn metallogenic province. The mineral zones in this deposit comprise skarn, greisen, structurally altered rock and quartz-vein types. The deposit is mainly hosted by Devonian dolomitic limestone at the contact with the Xitian granite complex. The Xitian granite complex consists of Indosinian (Late Triassic, 230–215 Ma) and Yanshanian (Late Jurassic–Early Cretaceous, 165–141 Ma) granites. Zircons from two samples of the Xitian granite dated using laser ablation-inductively coupled mass spectrometer (LA-ICPMS) U–Pb analysis yielded two ages of 225.6 ± 1.3 Ma and 151.8 ± 1.4 Ma, representing the emplacement ages of two episodic intrusions of the Xitian granite complex. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 149.7 ± 0.9 Ma, in excellent agreement with a weighted mean age of 150.3 ± 0.5 Ma. Two samples of muscovites from ore-bearing greisens yielded 40Ar/39Ar plateau ages of 149.5 ± 1.5 Ma and 149.4 ± 1.5 Ma, respectively. These isotopic ages obtained from hydrothermal minerals are slightly younger than the zircon U–Pb age of 151.8 ± 1.4 Ma of the Yanshanian granite in the Xitian area, indicating that the W–Sn mineralization is genetically related to the Late Jurassic magmatism. The Xitian deposit is a good example of the Early Yanshanian regional W–Sn ore-forming event (160–150 Ma) in the Nanling region. The relatively high Re contents (8.7 to 44.0 ppm, average of 30.5 ppm) in molybdenites suggest a mixture of mantle and crustal sources in the genesis of the ore-forming fluids and melts. Based upon previous geochemical studies of Early Yanshanian granite and regional geology, we argue that the Xitian W–Sn polymetallic deposit can be attributed to back-arc lithosphere extension in the region, which was probably triggered by the break-off of the flat-slab of the Palae-Pacific plate beneath the lithosphere.  相似文献   

19.
20.
中国铀矿资源成矿地质特征与资源潜力分析   总被引:1,自引:0,他引:1  
铀资源是我国重要的战略资源和能源矿产,为摸清其资源潜力,科学规划资源勘探、开发与利用,铀矿与其他25个重要矿种一同开展了全国性的资源潜力评价工作。在项目开展过程中,通过对中国铀矿资源特征、铀矿床类型(成因类型和预测类型)、时空分布研究,总结了中国铀矿的成矿规律。评估工作全面梳理了中国铀资源勘查成果与最近铀矿勘查工作进展,总结了中国铀矿时空分布特征及规律,划分了29个铀成矿区带和20个铀成矿远景区带;建立了4大类9类21亚类铀矿床类型划分方案,划分了50个铀矿预测类型;采用矿床模型综合地质信息法完成了共49个铀成矿(远景)区带的资源潜力评价工作;并对各区带潜力评价成果进行了全面的统计与分析。上述研究成果综合分析、评价了我国铀资源潜力,为未来的铀矿找矿工作和核能发展规划提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号