首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   

2.
Upper Cretaceous volcano-sedimentary sequences of the Eastern Pontide orogenic belt, NE Turkey, are host to significant VMS mineralization, including near Tunca. The initial stages of felsic volcanism within the mineralized area are marked by the eruption of dacitic lavas and breccias of the Kızılkaya Formation. This was accompanied by the emplacement of domelike hematitic dacites. Autobrecciated and volcaniclastic rocks, both in situ and resedimented, were likely generated from extrusive portions of these dacite bodies. Basaltic volcanism is marked by the eruption of the lava flows and pillow lavas of the Çağlayan Formation. Hiatuses in basaltic activity are marked by thin horizons of volcaniclastics and mudstones. The uppermost felsic volcanic units were accompanied by resedimentation of autoclastic facies from previous volcanism and represent the latest phase of Upper Cretaceous volcanism in the area. The semi-massive sulfide mineralization is associated with a late stage of the initial felsic volcanism. U-Pb LA-ICP-MS zircon dating of a dacitic tuff breccia yielded an age of 88.1 ± 1.2 Ma (Coniacian-Upper Cretaceous), which is interpreted to be the age of the sulfide occurrences.A concentric zoned alteration pattern is observed in the footwall rocks. The alteration pattern is considered to have formed by lateral migration of hydrothermal fluids which had ascended along the discharge conduit. Fluid inclusion data indicate precipitation or mobilization processes within a relatively narrow temperature range of 152–255 °C (avg. 200 °C). The low-salinity fluids in the fluid inclusions, less than 5.9 wt% NaCl equivalent, are consistent with typical modified seawater-dominant hydrothermal vent fluids. Sulfur isotope analysis of the Tunca sulfides yields a narrow range of 1.5–4.1 per mil. These δ34S values are also typical of many VMS deposits. Most of the recorded δ18O values (+7.1 to +14.0 per mil) are greater than 9 per mil. The most intensely hydrothermally altered rocks tend to have lower δ18O values relative to the less altered rocks. Collectively, the geologic relationships, mineralization style, and the lack of seafloor ore facies suggest that mineralization is principally of sub-seafloor origin. The most geologically reasonable interpretation of the genesis of the Tunca mineralization is the continuous interaction between the host rocks and seawater-derived fluids, without significant involvement of a magmatic fluid.  相似文献   

3.
The Northern Ultramafic Centre (NUC) of the Lac des Iles Complex, Northwest Ontario hosts several platinum group element (PGE) occurrences, including the Sutcliffe Zone, which consists of four subparallel, stratiform PGE-enriched intervals exposed within the cyclically layered eastern flank of the NUC. Field relationships, mineral paragenesis and lithogeochemistry allowed for the identification of 14 cyclic cumulate sequences of two distinct types – Cyclic unit type A (CUA) and Cyclic unit type B (CUB). CUA-type and CUB-type units are interpreted to have formed from a Si-enriched and Si-poor parent magmas, respectively. PGE-enriched intervals occur in four of the CUA-type cyclic units (CUA-5, -6, -8 and -11). PGE enriched intervals are commonly associated with websterite, olivine websterite and gabbronorite containing primary disseminated sulfide (0.2–2 vol%) which are dominated by pyrrhotite, chalcopyrite, and pentlandite with minor cubanite, and troilite. In hydrothermally altered rocks enriched in PGE, primary sulfides are locally partially replaced by secondary chalcopyrite, sphalerite, heazlewoodite, and chalcocite. Palladium occurs either in solid solution with primary pentlandite or is associated with platinum group minerals (PGM) such as Pd-plumbide, Pd-telluride, and Pt-bismuthotelluride. PGMs commonly occur within primary sulfides, at contacts between primary sulfide–silicate minerals, or in association with secondary serpentine and actinolite. Gold and silver typically occur as electrum that exhibits similar textural characteristics and mineralogical associations as the PGMs.Two different chemostratigraphic patterns of PGE, Cu and S enrichment can be recognized among the mineralized CUA cycles: The first (top-loaded) occurs near the top of CUA cycles (CUA-6, -8 and -11) in websterite and/or gabbronorite, just below the levels at which CUB magmas were emplaced. The second (middle-loaded), occurs midway through the lower cycle (CUA-5) in the olivine websterite, which is overlain by CUA-6. Within the four mineralized intervals, PGE tenors average 643 ppm Pd + Pt (in 100% sulfide), Pd/Pt and Pd/Ir ratios range from 0.9 to 3.5 and 35 to 537, respectively, and S/Se ratios range between 500 and 6000. The highest PGE tenors (4377 ppm Pd + Pt) are found in the lowermost interval in serpentinized olivine websterite and have an average Pd/Pt ratio of 3.5 and a S/Se ratio of approximately 2000.It is proposed that orthomagmatic processes of fractional crystallization and dynamic magma recharge were the dominant mineralization processes triggering sulfide-saturation and PGE concentration at the Sutcliffe Zone. Textural relationships between PGM, sulfide minerals, and primary and secondary hydrous silicates suggest that late magmatic to postcumulus hydrothermal fluid infiltration occurred locally during and after sulfide mineralization of the PGE-enriched intervals. However, these fluids had a minimal effect on the distribution of PGE in the Sutcliffe Zone. The Sutcliffe Zone shares many similarities with classic stratiform PGE deposits in terms of Pd/Pt ratio, high PGE tenors, low abundance of sulfide, and PGM assemblages. However, it is distinguished from most stratiform PGE deposits by its tectonic environment and lithostratigraphic position and by the intimate spatial association of the two parental magmas that are interpreted to have been responsible for the observed chemostratigraphy and PGE enrichment.  相似文献   

4.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

5.
Cu-rich massive sulfide deposits associated with mafic–ultramafic rocks in the southern portion of the Main Urals Fault (MUF) are characterized by variable enrichments in Ni (up to 0.45 wt.%), Co (up to 10 wt.%) and Au (up to 16 ppm in individual hand-specimens). The Cu (Ni–Co)-rich composition of MUF deposits, as opposed to the Cu (Zn)-rich composition of more eastward massive sulfide deposits of broadly similar age along the western flank of the Magnitogorsk arc, reflects the abundance of seafloor-exposed, Ni–Co-rich ultramafic rocks in the most external portion of the Early-Devonian Magnitogorsk forearc. Morphological, textural, and compositional differences between individual deposits are interpreted to be the result of the sulfide deposition style and, in part, of the original subseafloor lithology. One deposit produced by dominantly on-seafloor hydrothermal processes is characterized by pyrite–marcasite  pyrrhotite, not so low Zn grades (occasionally up to 2 wt.%), abundant clastic facies and periodical superficial oxidation. Deposits produced by dominantly subseafloor hydrothermal processes are characterized by pyrrhotite > pyrite, very low Zn (generally < to ≪ 0.1 wt.%), volumetrically minor clastic facies, and multi-layer deposit morphology. Very low Ni/Co ratios in the on-seafloor deposit may indicate a dominant metal contribution from a mafic rather than ultramafic source. The sulfide mineralization was associated with extensive hydrothermal alteration of the host ultramafic and mafic rocks, leading to formation of abundant talc, talc–carbonate and chlorite rocks. Occurrence of large volumes of such altered lithotypes in ophiolitic belts may be considered as a potential searching criteria for MUF-type (Cu, Co, Ni)-deposits. In spite of the contrasting geodynamic environment, geological, geochemical, textural and mineralogical peculiarities of the MUF deposits in many respects are similar to those of ultramafic-hosted massive sulfide deposits along the Mid-Atlantic Ridge. In geological time, supra subduction-zone settings appear to have been more effective than mid-ocean ridge settings for preservation of ultramafic-hosted massive sulfide deposits.  相似文献   

6.
《Ore Geology Reviews》2007,30(3-4):177-241
Australia's nickel sulfide industry has had a fluctuating history since the discovery in 1966 of massive sulfides at Kambalda in the Eastern Goldfields of Western Australia. Periods of buoyant nickel prices and high demand, speculative exploration, and frenetic investment (the ‘nickel boom’ years) have been interspersed by protracted periods of relatively depressed metal prices, exploration inactivity, and low discovery rates. Despite this unpredictable evolution, the industry has had a significant impact on the world nickel scene with Australia having a global resource of nickel metal from sulfide ores of ∼ 12.9 Mt, five world-class deposits (> 1 Mt contained Ni), and a production status of number three after Russia and Canada. More than 90% of the nation's known global resources of nickel metal from sulfide sources were discovered during the relative short period of 1966 to 1973. Australia's nickel sulfide deposits are associated with ultramafic and/or mafic igneous rocks in three major geotectonic settings: (1) Archean komatiites emplaced in rift zones of granite–greenstone belts; (2) Precambrian tholeiitic mafic–ultramafic intrusions emplaced in rift zones of Archean cratons and Proterozoic orogens; and (3) hydrothermal-remobilized deposits of various ages and settings. The komatiitic association is economically by far the most important, accounting for more than 95% of the nation's identified nickel sulfide resources. The ages of Australian komatiitic- and tholeiitic-hosted deposits generally correlate with three major global-scale nickel-metallogenic events at ∼ 3000 Ma, ∼ 2700 Ma, and ∼ 1900 Ma. These events are interpreted to correspond to periods of juvenile crustal growth and the development of large volumes of primitive komatiitic and tholeiitic magmas caused by large-scale mantle overturn and mantle plume activities. There is considerable potential for the further discovery of komatiite-hosted deposits in Archean granite–greenstone terranes including both large, and smaller high-grade (5 to 9% Ni) deposits, that may be enriched in PGEs (2 to 5 g/t), especially where the host ultramafic sequences are poorly exposed.Analysis of the major komatiite provinces of the world reveals that fertile komatiitic sequences are generally of late Archean (∼ 2700 Ma) or Paleoproterozoic (∼ 1900 Ma) age, have dominantly Al-undepleted (Al2O3/TiO2 = 15 to 25) chemical affinities, and often occur with sulfur-bearing country rocks in dynamic high-magma-flux environments, such as compound sheet flows with internal pathways facies (Kambalda-type) or dunitic compound sheet flow facies (Mt Keith-type). Most Precambrian provinces in Australia, particularly the Proterozoic orogenic belts, contain an abundance of sulfur-saturated tholeiitic mafic ± ultramafic intrusions that have not been fully investigated for their potential to host basal Ni–Cu sulfides (Voisey's Bay-type mineralization). The major exploration challenges for finding these deposits are to determine the pre-deformational geometries and younging directions of the intrusions, and to locate structural depressions in the basal contacts and feeder conduits under cover. Stratabound PGE–Ni–Cu ± Cr deposits hosted by large Archean–Proterozoic layered mafic–ultramafic intrusions (Munni Munni, Panton) of tholeiitic affinity have comparable global nickel resources to many komatiite deposits, but low-grades (< 0.2% Ni). There are also hydrothermal nickel sulfide deposits, including the unusual Avebury deposit in western Tasmania, and some potential for ‘Noril'sk-type’ Ni–Cu–PGE deposits associated with major flood basaltic provinces in western and northern Australia.  相似文献   

7.
A Permian magmatic Ni-Cu sulfide deposit cluster occurs in the Kalatongke district in the Southern Chinese Altai Orogenic Belt, western China. These deposits are associated with the mafic units of the Y1, Y2, Y3, Y9 and G21 mafic-intermediate complexes. In this paper we report the first zircon U-Pb ages for the Y3 and G21 intrusions, which are 283.3 ± 1.3 Ma and 281.1 ± 1.5 Ma, respectively. Our new age data confirm that the sulfide-bearing mafic units of the Y1, Y2 (connected with Y1 at depth), Y3, Y9 and G21 intrusions all formed in Early Permian between ∼281 and ∼287 Ma. New and existing petrological-geochemical data show some important regular variations between these deposits. The host lithologies change from olivine-bearing rocks for the Y1-Y2-Y9 deposits to olivine-free rocks such as norite for the Y3 deposit and leucogabbro for the G21 deposit. The olivine Fo contents of the Y1 deposit are up to 82 mol%, which are slightly higher than those of the Y2 deposit (up to 81 mol%) and the Y9 deposit (up to 79 mol%). The average plagioclase An contents of the olivine-bearing Y1-Y2-Y9 deposits are higher than those of the olivine-free Y3-G21 deposits. Among the three deposits (Y1, Y2 and Y3) that occur closely along the same structural lineament, the Ni/Cu ratios of bulk sulfides decrease from the olivine-bearing deposits (Y1 and Y2) to the olivine-free deposit (Y3). The PGE tenors of these deposits (Y1, Y2 and Y3) and the nearby coeval deposits (Y9 and G21) are extremely low, indicating that their parental magmas are severely depleted in PGEs. The variations of PGE tenors within a single deposit as well as among the different deposits are mainly due to variable R factors. The host rocks of these deposits are all characterized by elevated initial 87Sr/86Sr ratios from 0.7045 to 0.7047, positive εNd values from 4.95 to 6.86, positive εHf values of zircon from 9 to 16, and elevated δ18O values of zircon from 6.15 to 6.7‰. The isotope data indicate that the parental magmas for these deposits experienced up to ∼15 wt% crustal contamination. The δ34S values of the sulfide minerals from these deposits are from −3.1‰ to 0.4‰, with a peak at −2.2‰, indicating the involvement of crustal sulfur. The isotope data and mineral chemistry together indicate that both olivine fractional crystallization and addition of crustal sulfur played a role in triggering sulfide saturation in the parental magmas for these deposits. Based on higher Ni/Cu ratios of sulfide mineralization in the olivine-bearing intrusions (Y1, Y2, Y9) than in the coeval olivine-free intrusions (Y3, G21), we recommend that Ni exploration in the region focus on the olivine-bearing intrusions that were emplaced in the Early Permian.  相似文献   

8.
The Snowdon caldera of North Wales is host to base metal sulfide-bearing veins and stockworks, mineralized breccias, disseminated sulfides, and localized zones of semi-massive to massive sulfide, with subordinate magnetite-rich veins. The late Ordovician host volcanic sequence accumulated in a shallow marine, back-arc environment in the Welsh Basin, which forms part of the Avalon Zone of the British and Irish Caledonides. New field evidence, sulfur isotopes, and U-Pb dating indicate that the Snowdon mineralization is genetically and temporally related to Late Ordovician magmatism and caldera formation. It is interpreted to represent volcanogenic pipe-style sulfide mineralization, resulting from focused hydrothermal fluids moving along caldera-related faults and simultaneous dispersal of fluids through the volcaniclastic pile. Sulfur isotope data suggest that, whilst a limited contribution of magmatic S cannot be ruled out, thermochemical reduction of contemporaneous Ordovician seawater sulfate was the dominant mechanism for sulfide production in the Snowdon system, resulting in a mean value of about 12‰ in both the host volcanic strata and the mineralized veins. Despite the tectonic setting being prospective for VMS deposits, strata-bound sulfide accumulations are absent in the caldera. This is attributed to the shallow water depths, which promoted boiling and the formation of sub-seafloor vein-type mineralization. Furthermore, the tectonic instability of the caldera and the high energy, shallow marine environment would have limited preservation of any seafloor deposits. The new U-Pb dates for the base (454.26 ± 0.35 Ma) and top (454.42 ± 0.45 Ma) of the host volcanic rocks, indicate that the Snowdon magmatic activity was short lived, which is likely to have limited the duration and areal extent of the ore-forming system. The absence of massive sulfide mineralization is consistent with the general paucity of economic VMS deposits in the Avalon Zone. Despite the highly prospective geological setting this study further illustrates the importance of volcanic facies mapping and associated paleo-environmental interpretations in VMS exploration.  相似文献   

9.
The results obtained with LA-ICP-MS by less abundant lighter 113In isotope and EPMA show that in cassiterite of cassiterite–quartz veins the indium contents do not exceed 160 ppm, while cassiterite from Sn–sulfide veins is characterized by higher indium contents from 40 to 485 ppm; sulfides of Sn–sulfide veins unlike sulfides of cassiterite–quartz veins also have the highest indium contents: Fe-sphalerite (100–25,000 ppm), chalcopyrite (up to 1000 ppm), and stannite (up to 60,000 ppm). Indium contents in the Sn–sulfide ore of the Tigrinoe and Pravourmiiskoe deposits obtained using SR-XRF, ICP-MS and atomic absorption methods range from 10 to 433 ppm with average values of 56–65 ppm. Indium-rich Sn–sulfide mineralization in five large Sn–Ag ore districts of the Far East Russia (Khingansky, Badzhalsky, Komsomolsky, Arminsky, Kavalerovsky) provides the impetus for further exploration of deposits with Sn–sulfide mineralization as the most promising indium resources in Russia. Empirical observations from geology and geochronology of cassiterite–quartz and Sn–sulfide mineralization show that the combined contribution from granite and alkaline–subalkaline mafic sources and multistage ore-forming processes doubled indium resources of deposits being the main factors in the formation of high grade indium mineralization.  相似文献   

10.
The Munali Intrusive Complex (MIC) is a flattened tube-shaped, mafic-ultramafic intrusion located close to the southern Congo Craton margin in the Zambezi belt of southern Zambia. It is made up of a Central Gabbro Unit (CGU) core, surrounded by a Marginal Ultramafic-mafic Breccia Unit (MUBU), which contains magmatic Ni sulfide mineralisation. The MIC was emplaced into a sequence of metamorphosed Neoproterozoic rift sediments and is entirely hosted within a unit of marble. Munali has many of the characteristics of craton-margin, conduit-style, dyke-sill complex-hosted magmatic sulfide deposits. Three-dimensional modelling of the MUBU on the southern side of the MIC, where the Munali Nickel Mine is located, reveals a laterally discontinuous body located at the boundary between footwall CGU and hangingwall metasediments. Mapping of underground faces demonstrates the MUBU to have intruded after the CGU and be a highly complex, multi stage megabreccia made up of atypical ultramafic rocks (olivinites, olivine-magnetite rocks, and phoscorites), poikilitic gabbro and olivine basalt/dolerite dykes, brecciated on a millimetre to metre scale by magmatic sulfide. The breccia matrix is largely made up of a sulfide assemblage of pyrrhotite-pentlandite-chalcopyrite-pyrite with varying amounts of magnetite, apatite and carbonate. The sulfides become more massive towards the footwall contact. Late stage, high temperature sulfide-carbonate-magnetite veins cut the rest of the MUBU. The strong carbonate signature is likely due, in part, to contamination from the surrounding marbles, but may also be linked to a carbonatite melt related to the phoscorites. Ductile deformation and shear fabrics are displayed by talc-carbonate altered ultramafic clasts that may represent gas streaming textures by CO2-rich fluids. High precision U-Pb geochronology on zircons give ages of 862.39 ± 0.84 Ma for the poikilitic gabbro and 857.9 ± 1.9 Ma for the ultramafics, highlighting the multi-stage emplacement but placing both mafic and later ultramafic magma emplacement within the Neoproterozoic rifting of the Zambezi Ocean, most likely as sills or sheet-like bodies. Sulfide mineralisation is associated with brecciation of the ultramafics and so is constrained to a maximum age of 858 Ma. The Ni- and Fe-rich nature of the sulfides reflect either early stage sulfide saturation by contamination, or the presence of a fractionated sulfide body with Cu-rich sulfide elsewhere in the system. Munali is an example of a complex conduit-style Ni sulfide deposit affected by multiple stages and sources of magmatism during rifting at a craton margin, subsequent deformation; and where mafic and carbonatitic melts have interacted along deep seated crustal fault systems to produce a mineralogically unusual deposit.  相似文献   

11.
The Doriri Creek (DC) Ni–Pd–Pt prospect was discovered in 1966 in the Papuan Ultramafic Belt (PUB) in PNG. The DC was interpreted as a hydrothermal Ni accumulation. The DC is located in the southern proximity of Mt Suckling (~ 180 km SE of Port Moresby), where local intrusive rocks are intermediate to acid dykes and small stocks, within the tec tonized contact zone of the Australian and Woodlark Plates. The active volcanoes of Mount Victory and Waiowa indicate recent thermal activity in the area.The Doriri Creek prospect is the result of episodic hydrothermal fluid flow running through the Doriri prospect, that resulted in Ni concentration of up to 1.55 wt.%, formed by alteration of an ultramafic unit of peridotites/pyroxenites within a Mg-rich gabbronorite envelope. Ni was concentrated in chlorite and serpentine group minerals in addition to Fe oxides, with a minor amount in pentlandite in locally sulfidic samples. Ore mineralogy is also associated with a high phosphorous content as apatite, that concentrates LREE (light rare earth elements). Palladium concentrations are up to 0.37 ppm. Platinum is present in concentrations up to 0.06 ppm within the ore.The alteration halo associated with Doriri Creek mineralization is ~ 100 m in width. Primary mineralogy comprises pyroxene, olivine and plagioclase, which have been altered extensively to amphibole and chlorite–serpentine group minerals. This halo is characterized by enrichments of U, K and W over background values.Local magnetite concentration is up to ~ 35% of whole rock, which is very pronounced in the sulfide rich area of the system. The top part of the DC system is overprinted by tropical weathering at metric scale, which displays LREE enrichment and positive Ce anomalies.The Papuan Ultramafic Belt is described as a highly prospective ground for hydrothermal Ni systems based on its availability of Ni, active thermal flow engines, and the geologic regional context dominated by mafic rock suites and the presence of carbonate/siliciclastic units.  相似文献   

12.
The Kapalagulu layered ultramafic and mafic intrusion is emplaced between the Paleoproterozoic Ubendian basement and overlying Neoproterozoic Itiaso Group metasedimentary rocks, located near the western shore of Lake Tanganyika. High-grade platinum group element (PGE) mineralization (1–6 g/t Pt + Pd + Au) is associated with chromitite and sulfide-bearing harzburgite within the southeastern extension of the intrusion, known as the Lubalisi Zone, which is covered by a layer of nickel-rich (0.2–2%Ni) laterite regolith that contains linear areas of PGE mineralization.In the Lubalisi Zone, the mineralization may be divided into several significant geometallurgical domains: (a) high-grade PGE mineralization (1–6 g/t Pt + Pd + Au) associated with stratiform PGE reefs and chromitite seams within a harzburgite unit; (b) high-grade PGE mineralization (up to 12 g/t Pt + Pd + Au) associated with small bodies and veins of nickel massive sulfide within harzburgite below PGE-bearing reefs and chromitite seams; (c) low-grade PGE mineralization (0.1–0.5 g/t Pt + Pd + Au) associated with a sulfide-mineralized harzburgite unit above the PGE-bearing reefs; (d) laterite style residual PGE mineralization (0.2–4 g/t Pt + Pd + Au) associated with chromite concentrations in the saprolite and overlying red clay horizons of the laterite regolith; and (e) supergene Ni associated with the saprock and overlying saprolite clay.Mineralogical study of three samples from the PGE reef consisting of high grade PGE chromitite and harzburgite indicate that this mineralization will give a good metallurgical response to conventional grinding and floatation due to the relatively coarse-grained nature of the PGM (P80 from ∼37 to 52 µm), association with base metal sulfides, and unaltered gangue minerals (Wilhelmij and Cabri, 2016). In contrast, mineralogical and metallurgical study of the Ni and PGE mineralized laterite indicate that it cannot be processed using conventional mineral processing techniques but that a hydrometallurgical route should be used to recover the base and precious metals. Because any process is very much deposit-controlled, significant metallurgical and geometallurgical testing of mineralized samples, as well as pilot plant testing, will be required to arrive at feasibility studies.  相似文献   

13.
Modern seafloor hydrothermal systems provide important insights into the formation and discovery of ancient volcanic-hosted massive sulfide (VHMS) deposits. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 drilled five sites in the Iheya North hydrothermal field in the middle Okinawa Trough back-arc basin, Japan. Hydrothermal alteration and sulfide mineralization is hosted in a geologically complex, mixed sequence of coarse pumiceous volcaniclastic and fine hemipelagic sediments, overlying a dacitic to rhyolitic volcanic substrate. At site C0016, located adjacent to the foot of the actively venting North Big Chimney massive sulfide mound, massive sphalerite-(pyrite-chalcopyrite ± galena)-rich sulfides were intersected (to 30.2% Zn, 12.3% Pb, 2.68% Cu, 33.1 ppm Ag and 0.07 ppm Au) that strongly resemble the black ore of the Miocene-age Kuroko deposits of Japan. Sulfide mineralization shows clear evidence of formation through a combination of surface detrital and subsurface chemical processes, with at least some sphalerite precipitating into void space in the rock. Volcanic rocks beneath massive sulfides exhibit quartz-muscovite/illite and quartz-Mg-chlorite alteration reminiscent of VHMS proximal footwall alteration associated with Kuroko-type deposits, characterized by increasing MgO, Fe/Zn and Cu/Zn with depth. Recovered felsic footwall rocks are of FII to FIII affinity with well-developed negative Eu anomalies, consistent with VHMS-hosting felsic rocks in Phanerozoic ensialic arc/back-arc settings worldwide.Site C0013, ∼100 m east of North Big Chimney, represents a likely location of recent high temperature discharge, preserved as surficial coarse-grained sulfidic sediments (43.2% Zn, 4.4% Pb, 5.4% Cu, 42 ppm Ag and 0.02 ppm Au) containing high concentrations of As, Cd, Mo, Sb, and W. Near surface hydrothermal alteration is dominated by kaolinite and muscovite with locally abundant native sulfur, indicative of acidic hydrothermal fluids. Alteration grades to Mg-chlorite dominated assemblages at depths of >5 mbsf (metres below sea floor). Late coarse-grained anhydrite veining overprints earlier alteration and is interpreted to have precipitated from down welling seawater as hydrothermal activity waned. At site C0014, ∼350 m farther east, hydrothermal assemblages are characterized by illite/montmorillonite, with Mg-chlorite present at depths below ∼30 mbsf. Recovered lithologies from distal, recharge site C0017 are unaltered, with low MgO, Fe2O3 and base metal concentrations.Mineralization and alteration assemblages are consistent with the Iheya North system representing a modern analogue for Kuroko-type VHMS mineralization. Fluid flow is focussed laterally along pumiceous volcaniclastic strata (compartmentalized between impermeable hemipelagic sediments), and vertically along faults. The abundance of Fe-poor sphalerite and Mg-rich chlorite (clinochlore/penninite) is consistent with the lower Fe budget, temperature and higher oxidation state of felsic volcanic-hosted hydrothermal systems worldwide compared to Mid Ocean Ridge black smoker systems.  相似文献   

14.
The Huangshannan Ni–Cu sulfide deposit at the southern margin of the Central Asian Orogenic Belt (CAOB) is an important recent discovery in the Eastern Tianshan Region, Northwestern China. The Huangshannan Intrusion is composed of mafic and ultramafic rocks, and its websterite and lherzolite sequences host the sulfide orebodies. Olivine is the dominant mineral in the Huangshannan Intrusion, occurring as olivine inclusions hosted by pyroxene oikocrysts, as olivine crystals in magmatic sulfides, and as poikilitic crystals in the lherzolite. Small olivine inclusions always coexist with large poikilitic olivine crystals in the same sample, resulting in a heterogeneous texture on the scale of the oikocrysts. The Ni abundance ranges from 1540 to 3772 ppm in poikilitic olivine grains, from 2114 to 3740 ppm in olivine grains hosted by sulfide minerals, and from 2043 to 4023 ppm in olivine inclusions hosted by pyroxene oikocrysts. For the three types of olivine, the ranges in forsterite (Fo) content are 78.97–84.92 mol.%, 81.57–84.79 mol.%, and 80.33–84.68 mol.%, respectively. The Ni content of olivine in the lherzolite is anomalously high relative to the range found in most within plate olivine-bearing mafic-ultramafic rocks. The composition of olivine is controlled mainly by that of the parental magma, fractional crystallization and reactions with interstitial silicate and sulfide melts. Both fractional crystallization and reaction with interstitial silicate may cause a decrease in the Ni content of olivine. The possibility that Ni–Fe exchange causes the anomalously high Ni contents in olivine can be excluded because the olivine grains contained in sulfide have similar or lower Ni content than the olivine grains hosted in the silicate rock. Most of the olivine grains are unzoned, and they have anomalously high Ni contents throughout the crystal. Assuming a partition coefficient of Ni between olivine and silicate magma to be 7, the measured Ni content of olivine in the lherzolite (1540–4023 ppm with a mean of 2907 ppm) indicates that the parental magma contains 220–575 ppm (average of 415 ppm) Ni. This value is higher than that found in basaltic magmas that crystallized olivine with similar Fo contents compared to the Huangshannan Intrusion. As mentioned above, the symmetric and reproducible variations in both Fo and Ni contents from core to margin in most of the olivine grains cannot be explained by fractional crystallization and reactions with interstitial silicate or sulfide melts but may reflect the equilibration of the olivine with new fluxes of magma as the chamber was replenished. The anomalously Ni-rich composition of the parental magmas of the Huangshannan Intrusion, relative to those of many other mineralized olivine-bearing mafic-ultramafic intrusions, may be produced by upgrading and scavenging of metals from a previously formed sulfide melts by a moderately Ni-rich magma. The mass-balance calculations of PGE data indicate that the parental magma that formed lherzolite contains 0.04 ppb Os, 0.02 ppb Ir and 0.4 ppb Pd, whereas the parental magma that formed websterite has 0.02 ppb Os, 0.009 ppb Ir and 0.75 ppb Pd. Rayleigh modeling using PGE tenors indicates that the massive sulfides may be produced by monosulfide solid solution (MSS)-sulfide liquid fractionation from the magma that formed the websterite. Rayleigh modeling of Fo and Ni contents of olivine shows that the parental magma that formed the lherzolite has experienced previous sulfide segregation and olivine crystallization.  相似文献   

15.
The Huangshaping Pb–Zn–W–Mo polymetallic deposit, located in southern Hunan Province, China, is one of the largest deposits in the region and is unique for its metals combination of Pb–Zn–W–Mo and the occurrence of significant reserves of all these metals. The deposit contains disseminated scheelite and molybdenite within a skarn zone located between Jurassic granitoids and Carboniferous sedimentary carbonate, and sulfide ores located within distal carbonate-hosted stratiform orebodies. The metals and fluids that formed the W–Mo mineralization were derived from granitoids, as indicated by their close spatial and temporal relationships. However, the source of the Pb–Zn mineralization in this deposit remains controversial.Here, we present new sulfur, lead, and strontium isotope data of sulfide minerals (pyrrhotite, sphalerite, galena, and pyrite) from the Pb–Zn mineralization within the deposit, and these data are compared with those of granitoids and sedimentary carbonate in the Huangshaping deposit, thereby providing insights into the genesis of the Pb–Zn mineralization. These data indicate that the sulfide ores from deep levels in the Huangshaping deposit have lower and more consistent δ34S values (− 96 m level: + 4.4‰ to + 6.6‰, n = 13) than sulfides within the shallow part of the deposit (20 m level: + 8.3‰ to + 16.3‰, n = 19). The δ34S values of deep sulfides are compositionally similar to those of magmatic sulfur within southern Hunan Province, whereas the shallower sulfides most likely contain reduced sulfur derived from evaporite sediments. The sulfide ores in the Huangshaping deposit have initial 87Sr/86Sr ratios (0.707662–0.709846) that lie between the values of granitoids (0.709654–0.718271) and sedimentary carbonate (0.707484–0.708034) in the Huangshaping deposit, but the ratios decreased with time, indicating that the ore-forming fluids were a combination of magmatic and formation-derived fluids, with the influence of the latter increasing over time. The lead isotopic compositions of sulfide ores do not correlate with sulfide type and define a linear trend in a 207Pb/204Pb vs. 206Pb/204Pb diagram that is distinct from the composition of the disseminated pyrite within sedimentary carbonates and granitoids in the Huangshaping deposit, but is similar to the lead isotopic composition of sulfides within coeval skarn Pb–Zn deposits in southern Hunan Province. In addition, the sulfide ores have old signatures with relative high 207Pb/206Pb ratios, suggesting that the underlying Paleoproterozoic basement within southern Hunan Province may be the source of metals within the Huangshaping deposit.The isotope geochemistry of sulfide ores in the Huangshaping deposit shows a remarkable mixed source of sulfur and ore-forming fluids, and the metals were derived from the basement. These features are not found in representative skarn-type Pb–Zn mineralization located elsewhere. The ore-forming elements (S, Pb, and Zn) from the granitoids made an insignificant contribution to sulfide precipitation in this deposit. However, the emplacement of granitoids did provide large amounts of heat and fluids to the hydrothermal system in this area and extracted metals from the basement rocks, indicating that the Jurassic magmatism associated with the Huangshaping deposit was crucial to the Pb–Zn mineralization.  相似文献   

16.
The Jinping terrane is situated in the southern segment of the Ailaoshan ore belt, Sanjiang Tethyan Orogen (SW China). The Paleogene intrusions in Jinping consist of syenite porphyry, fine-grained syenite and biotite granite stocks/dikes, and contain relatively low TiO2 (0.21–0.38 wt%), P2O5 (0.01–0.35 wt%), and high Na2O (2.00–4.62 wt%) and K2O (4.48–7.06 wt%), belonging to high-K alkaline series. Paleogene gold mineralization in Jinping comprises four genetic types, i.e., orogenic, alkali-rich intrusion-related, porphyry and supergene laterite. The NW–NNW-trending faults and their subsidiaries are the major ore-controlling structures. The orogenic Au mineralization, dominated by polymetallic sulfide-quartz veins, occurs in the diorite and minor in Silurian-Devonian sedimentary rocks. It contains a CO2-rich mesothermal fluid system generated from the mixing of mantle-derived fluids with crustal-derived metamorphic fluids, and the ore-forming materials were upper crustal- or orogenic-derived. The alkali-rich intrusion-related Au mineralization is hosted in the Ordovician-Silurian sedimentary rocks and minor in the Paleogene alkaline intrusions, and the Au orebodies occur predominantly in the alteration halos. It contains a CO2-bearing, largely metamorphic-sourced mesothermal fluid system, and the ore-forming materials were derived from the ore-hosting rocks and minor from the alkali-rich intrusions. The porphyry Cu-Mo-Au mineralization occurs in the granite/syenite porphyries and/or along their contact skarn, with the mineralizing fluids being magmatic-hydrothermal in origin. The former two hypogene Au mineralization types in Jinping were mainly formed in the late Eocene (ca. 34–33 Ma) and slightly after the porphyry Cu-Mo-Au mineralization (ca. 35–34 Ma), which is coeval with the regional Himalayan orogenic event. Subsequent weathering produced the laterite Au mineralization above or near the hypogene Au orebodies.  相似文献   

17.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

18.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

19.
毛亚晶  秦克章  唐冬梅 《岩石学报》2018,34(8):2410-2424
岩浆铜镍矿床100%硫化物中的Ni含量与赋矿岩石和成矿过程紧密相关,记录岩浆成分、分异程度与硫化物演化过程。硫化物异常高镍(高镍硫化物)往往被认为与科马提质岩浆或者后期热液作用密切相关。近年研究结合勘查证实,赋含高镍硫化物的矿床(高镍铜镍矿床)不仅限于科马提岩,还与苦橄质、玄武质岩浆有关,另外,热液富集作用并不是必要因素。本文总结了世界上高镍铜镍矿床的基本特征和形成机制,分析提出了不同机制的判别标志,并展望了其勘查前景。详细对比高镍铜镍矿床的产出环境、赋矿岩相、矿石特征、矿物组合等特征,该类矿床往往产于大陆裂谷和造山带环境,与基性程度较高的岩浆有关,以橄榄岩赋矿为主,含镍硫化物组合主要为镍黄铁矿-磁黄铁矿-黄铜矿组合,少数为针镍矿-镍黄铁矿-黄铁矿组合。科马提岩相关矿床可将Ni含量大于16%的硫化物定义为高镍硫化物,苦橄质-玄武质岩浆相关矿床的硫化物可分为高镍硫化物(Ni10%)、中镍硫化物(5%~10%)和富铜硫化物(Ni5%,CuNi)。原生高镍硫化物可由富镍岩浆熔离、硫化物从橄榄石中吸取Ni、硫化物结晶分异、硫化物与硫不饱和岩浆反应等机制形成。苦橄质-玄武质岩浆相关的矿床,硫化物与橄榄石的Fe-Ni交换反应是高镍硫化物形成的重要机制。辉石岩源区地幔部分熔融形成富镍岩浆是否为高镍硫化物形成的必要条件尚存争议。不同机制形成的高镍硫化物具有迥异的岩石-矿物组合和地化特征。硫化物矿物组合、橄榄石成分(Fo值、Ni含量、Fo值-Ni含量的相关性)、伴生元素(铜、铂族元素)丰度-配分模式等特征可作为区分不同高镍硫化物形成机制的有效指标。我国新疆黄山南、坡一和青海夏日哈木矿床(部分浸染状矿化橄榄岩)以赋含高镍硫化物为特征,新疆喀拉通克矿床的硫化物则以富铜为特征,中国其余矿床的硫化物均属中镍硫化物。目前研究指示中国的高镍铜镍矿床与母岩浆相对富镍、硫化物与橄榄石Fe-Ni交换作用密切相关,后者可使硫化物Ni含量提升3%~5%。在铜镍矿床勘查方面,稀疏-中等浸染状高镍硫化物矿石即可达到工业品位,稠密浸染状-块状高镍硫化物矿石可达到很高的Ni品位(10%),是高品位镍矿勘查的一个重要方向。造山带环境富水、相对高氧逸度(可高达QFM+1)的岩浆可能是形成高镍硫化物的有利条件,该环境橄榄石Fo值较高(87mol%)的岩体有利于形成高镍硫化物。  相似文献   

20.
The original ore-fluid of the Huogeqi Cu–Pb–Zn deposit in Inner Mongolia, northern China, was enriched in heavy oxygen isotopes with δ18O values ranging from 9.9 to 11.4 per mil, which is characteristic of the metamorphic devolatilization of pelitic rocks. The δD values determined by direct measurement of syn-ore hydrothermal tremolite range from − 116 to − 82 per mil, lying between the domains of typical metamorphic fluid and meteoric water, which is in equilibrium with organic matter. Oxygen and hydrogen isotope ratios indicate that the ore-fluid was derived from deep-sourced metamorphic fluid and interacted with organic-rich shale during fluid migration, which is consistent with the fluid evolution history revealed by a previous fluid inclusion study. Sulfides in the deposit are characteristically enriched in heavy S isotopes, with an average δ34S value of 13.4 ± 6.2 per mil (1σ, n = 103). The S-isotope ratios are identical to stratabound sulfides generated through the non-bacterial reduction of Neoproterozoic marine sulfate (with δ34S values of ~ 17 per mil). Previous studies on lead isotopes of sulfides revealed that the ore-forming metals (Cu, Pb, and Zn) at the Huogeqi deposit were also remobilized from a stratabound source. This source was syngenetically elevated in its Cu-, Pb-, and Zn-sulfide content as a result of submarine hydrothermal activities forming sulfide-rich layers within a rift tectonic setting. The Fe isotope ratios for sulfides are consistent with those of an intercalated iron-formation within the ore-hosting rocks, suggesting that the Fe in the sulfides was derived from local host rocks during sulfide precipitation and the Fe-rich rocks are favorable lithological units for high-grade mineralization. The heterogeneous sources of ore-fluid, S, ore-forming metals, and Fe are explained by a multistage genetic model, which is supported by the geological characteristic of the deposit. The enriched sulfides were subsequently remobilized and enriched by metamorphic devolatilization during the Permian and Triassic periods. The metamorphic ore-fluid ascended along a shear zone and interacted with organic-rich shale. Sulfides eventually precipitated within the shear zone at a shallower crustal level, especially where the shear zone intersected Fe-rich host rocks. This multistage genetic model has implications for mineral exploration. Greenschist to amphibolite facies terranes containing thick Neoproterozoic rift sequences are ideal regions for potential Cu–Pb–Zn mineralization. In particular, intercalated volcanic rocks within the rift sequences are indicative of high heat-flow and are ideal for the development of submarine hydrothermal systems. The primary structures hosting mineralization and ore shoots in the Huogeqi area are jogs in the shear zones. In addition, Fe-rich lithological units, such as iron-formations, are ideal hosts for high-grade ore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号