首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dagushan BIF-hosted iron deposit in the Anshan–Benxi area of the North China Craton (NCC) has two types of iron ore: quartz–magnetite BIF (Fe2O3T < 57 wt.%) and high-grade iron ore (Fe2O3T > 90 wt.%). Chlorite-quartz schist and amphogneiss border the iron orebodies and are locally present as interlayers with BIFs; chlorite-quartz schist and BIFs are enclosed by amphogneiss in some locations. The quartz–magnetite BIFs are enriched in HREEs (heavy rare earth elements) with positive La, Eu and Y anomalies, indicating their precipitation from marine seawater with a high-temperature hydrothermal component. Moreover, these BIFs have low concentrations of Al2O3, TiO2 and HFSEs (high field strength elements, e.g., Zr, Hf and Ta), suggesting that terrigenous detrital materials contributed insignificantly to the chemical precipitation. The high-grade iron ores exhibit similar geochemical signatures to the quartz–magnetite BIFs (e.g., REE patterns and Y/Ho ratios), implying that they have identical sources of iron. However, these ores have different REE (rare earth element) contents and Eu/Eu* values, and the magnetites contained within them exhibit diverse REE contents and trace element concentrations, indicating that the ores underwent differing formation conditions, and the high-grade ores are most likely the reformed product of the original BIFs.The chlorite-quartz schist and amphogneiss are characterized by high SiO2 and Al2O3 contents and exhibit variable abundances of REEs, enrichment in LREEs (light rare earth elements), negative anomalies in HFSEs (e.g., Nb, Ta, P and Ti) and positive anomalies in LILEs (large ion lithophile elements, e.g., Rb, Ba, U and K). A protolith reconstruction indicates that the protoliths of the chlorite-quartz schist are felsic volcanic rocks. SIMS and LA-ICP-MS zircon U–Pb dating indicate that this schist formed at approximately 3110 to 3101 Ma, which could represent the maximum deposition age of the Dagushan BIF. However, two groups of zircons from the amphogneiss are identified: 3104 to 3089 Ma zircons that are most likely derived from the chlorite-quartz schist and 2997 to 2995 Ma zircons, which are interpreted to represent the time of protolith crystallization. Thus, the Dagushan BIF most likely formed before 2997 to 2995 Ma. The ~ 3.1 Ga zircons yield εHf(t) values of − 8.07 to 5.46, whereas the ~ 3.0 Ga zircons yield εHf(t) values of − 3.96 to 2.09. These geochemical features suggest that the primitive magmas were derived from the depleted mantle with significant contributions of ancient crust.  相似文献   

2.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

3.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

4.
Magnetite formed in different environments commonly has distinct assemblages and concentrations of trace elements that can potentially be used as a genetic indicator of this mineral and associated ore deposits. In this paper, we present textural and compositional data of magnetite from the Chengchao iron deposit, Daye district, China to provide a better understanding in the formation mechanism and genesis of the deposit and shed light on analytical protocols for in-situ chemical analysis of hydrothermal magnetite. Magnetite grains from the ore-related granitoid pluton, mineralized endoskarn, magnetite-dominated exoskarn, and vein-type iron ores hosted in marine carbonate intruded by the pluton were examined using scanning electron microscopy and analyzed for major and trace elements using electron microprobe. Back-scattered electron images reveal that primary magnetite from the mineralized skarns and vein-type ores were all partly reequilibrated with late-stage hydrothermal fluids, forming secondary magnetite domains that are featured by abundant porosity and have sharp contact with the primary magnetite. These textures are interpreted as resulting from a dissolution–reprecipitation process of magnetite, which, however, are mostly obscure under optically.Primary magnetite grains from the mineralized endoskarn and vein-type ores contain high SiO2 (0.92–3.21 wt.%), Al2O3 (0.51–2.83 wt.%), and low MgO (0.15–0.67 wt.%), whereas varieties from the exoskarn ores have high MgO (2.76–3.07 wt.%) and low SiO2 (0.03–0.23 wt.%) and Al2O3 (0.54–1.05 wt.%). This compositional contrast indicates that trace-element geochemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Compared to its precursor mineral, secondary magnetite is significantly depleted in most trace elements, with SiO2 deceasing from 1.87 to 0.47 wt.% (on average) and Al2O3 from 0.89 to 0.08 wt.% in mineralized endoskarn and vein type ores, and MgO from 2.87 to 0.60 wt.% in exoskarn ores. On the contrary, average content of iron is notably increased from 69.2 wt.% to 71.9 wt.% in the secondary magnetite grains. The results suggest that the dissolution–reprecipitation process has been important in significantly removing trace elements from early-stage magnetite to form high-grade, high-quality iron ores in hydrothermal environments. The textural and compositional data confirm that the Chengchao iron deposit is of hydrothermal origin, rather than being crystallized from immiscible iron oxide melts as previously suggested. This study also highlights the importance of textural characterization using various imaging techniques before in-situ chemical analysis of magnetite, as is the case for texturally complicated UTh-bearing accessory minerals that have been widely used for UPb geochronology study.  相似文献   

5.
Mineralization with ion adsorption rare earth elements (REEs) in the weathering profile of granitoid rocks from Nanling region of Southeast China is an important REE resource, especially for heavy REE (HREE) and Y. However, the Jurassic granites in Zhaibei which host the ion adsorption light REE (LREE) ores are rare. It is of peraluminous and high K calc-alkaline composition, which has similar geochemical features of high K2O + Na2O and Zr + Nb + Ce + Y contents and Ga/Al ratio to A-type granite. Based on the chemical discrimination criteria of Eby [Geology 20 (1992) 641], the Zhaibei granite belongs to A1-type and has similar source to ocean island basalts. The rock is enriched in LREE and contains abundant REE minerals including LREE-phosphates and halides. Minor LREE was also determined in the feldspar and biotite, which shows negligible and negative Eu anomalies, respectively. This indicates that the Zhaibei granite was generated by extreme differentiation of basaltic parent magmas. In contrast, granites associated with ion adsorption HREE ores contain amounts of HREE minerals, and show similar geochemical characteristics with fractionated felsic granites. Note that most Jurassic granitoids in the Nanling region contain no REE minerals and cannot produce REE mineralization. They belong to unfractionated M-, I- and S-type granites. Therefore, accumulation of REE in the weathering profile is controlled by primary REE mineral compositions in the granitoids. Intense fractional crystallization plays a role on REE enrichment in the Nanling granitoid rocks.  相似文献   

6.
The Kouambo iron deposit contains banded iron formations (BIFs) and is located in the northwestern margin of the Congo craton. The BIFs are hosted in Palaeoproterozoic Nyong series, a dominantly metasedimentary formations, which were metamorphosed into greenschist to granulite facies. The Kouambo BIFs are medium- to coarse-grained banded rocks consisting of alternation of Si-rich and Fe-rich mesobands, and belong to oxide facies iron formations. Geochemistry analyses reveal that these iron formations are composed of > 96 wt% Fe2O3 and SiO2 and have low concentrations of Al2O3, TiO2 and trace HFSE, suggesting chemical precipitates of silica and iron. Moreover, these BIFs have low concentrations of Al2O3, TiO2 and trace HFSEs (high field strength elements, e.g., Zr, Hf, Ta, Pb and Th), suggesting that terrigenous detrital materials contributed insignificantly to the sedimentation. The Post-Archean Australian Shale (PAAS)-normalized REE-Y patterns display seawater-like profile: minor LREE depletion and HREE enrichment, positive Y anomalies. However, they display positive Eu and negative Ce anomalies, and low Y/Ho ratio (average 29), which suggest the influence of the hydrothermal fluids. The weak positive Eu/Eu*(PAAS) ratio (average 1.5), associated with the low V (17.5 ppm), Co (6.1 ppm) and Ni (27.5 ppm) contents similar to other Superior-type BIFs worldwide, are consistent with the deposition of the Kouambo BIFs in continental marginal sea or back-arc basin environment. In summary, the Kouambo BIFs show a seawater-like REE + Y signature, however, the positive Eu anomalies and reduced Y/Ho ratios relative to seawater indicates a possible mixing with hydrothermal fluids (∼ 0.5%).  相似文献   

7.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

8.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

9.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

10.
The Neoproterozoic magnetite–apatite–hematite–pyrolusite–jaspilite deposits in the Bafq mining district (BMD) contain more than 1.7 Gt ores with an average grade of 50 wt.% Fe and 0.01 to 7.78 wt.% P and were probably formed between 635 and 547 Ma in a riftogenic felsic submarine exhalative sequence of the Esfordi Formation. The ore zones occur in proximal zone of magnetite-rich albitized rhyolite (keratophyres), interdistal zone of rhyolitic tuff–tuffaceous sediments and distal zone of pyrolusite–jaspilite. These sequences are covered by the diamictites and cap carbonates. The BIFs are linked to the altered rhyolites–rhyodacites, jaspilites and diamictites and contain magnetite, hematite and apatite. The presence of Spriggina, Dickinsonia, Medusites and Persimedusites chahgazensis (Sennewald and Krüger, 1979; Hahn and, Pflug; McCall, 2006) in the Kushk shale member of the Esfordi Formation conforms to the Australian fauna of the Ediacaran period (635–540). This relative age is supported by some reliable Pb isotopic data (635–547 Ma) on galena, monazite and apatite (Huckriede et al., 1962; Torab, 2008; Stosch et al., 2011). The most frequent structures–textures in the ore zones include felsic autobrecciation, massive, colloidal, banded, detrital and glaciogenic. The BIFs are highlighted by high values of LREE fractionation and no significant Eu and Ce anomalies. The ores show high values of Fe2O3 (14–60%), and SiO2 (4–34%), and low contents of Al (3.32%), Cr (21.48 ppm), Co (42.82 ppm), Ni (125 ppm), V (868 ppm), and Ti (0.13%) similar to those of the Ediacaran–Rapitan BIFs. The cap carbonates show depletion in δ13C, with a range from − 0.43 to − 6.6 per mil and then return to near excursion of about + 2.97‰ in the Lower Cambrian carbonates. These are followed by δ18O values, which range from − 6.64 to − 11.86‰. The presence of jaspilites, diamictites, C and O isotopic signatures, REE patterns, and immobile element relationships highlights a glaciogenic BIF. Importantly, the glaciogenic structures–textures and jaspilites do not support the misconception of the previously proposed magmatic–carbonatitic and metasomatic–hydrothermal IOCG–Kiruna ore deposits.  相似文献   

11.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

12.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

13.
A comprehensive study of pebbles from the 'Salento-type' allochthnous bauxite deposit (Otranto, southern Italy), originally derived from a pristine Campanian bauxite, has been performed for evaluating: 1) the chemical fractionation and inter-elemental relationships, especially for critical elements, 2) the climatic conditions that promoted bauxite formation, and 3) the provenance of the protolith(s) using zircon age data and conservative elemental proxies. The study confirms the capability of bauxite to concentrate many elements defined as critical by the European Union report on critical raw materials. Sc, Co, Ga, and especially Cr, are enriched when compared with the UCC composition and assuming Nb is immobile. Other critical elements such as the REEs, with the exception of La, are moderately depleted. R-mode factor analysis suggests that most of the variance in our chemical dataset is explained by a factor with significant weightings for TiO2, Al2O3, Fe2O3, Sc, V, Nb, REEs, Pb and Th. This arises from climate effects affecting the distribution of the more abundant oxides and some trace elements, including the critical metals Nb and REEs. The texture of the pebbles is typical for Apulian karst bauxites and consists of sub-spheroidal ooids composed of boehmite and dispersed in a fine-grained matrix. The growth of the ooids, which formed under dry climate, was described in terms of fractal geometry. The average fractal dimension value of the ooids in the pebbles is close to that of the diffusion-limited aggregation models suggesting the ooid growth can be modelled using a molecular diffusion pattern, based on Fick's first law. The calculated time required for growth of the boehmite concretions is ~ 45 ÷ 310 ka. This finding is consistent with an intra-Campanian emersion event (74–76 Ma) that occurred during a dry and warm climatic stage. Since most of the karst bauxites worldwide have an ooidic texture, evaluation of the composition of concretions and the time required for their growth represents a powerful tool in reconstructing the palaeoenvironment. The zircon grains collected from the pebbles of the Salento-type karst bauxite define several concordant age populations. The youngest cluster, Early Cretaceous in age (99 ÷ 127.5 Ma), suggests that windborne particles from Cretaceous volcanics, possibly originating in the Carpatho-Balkan orogenic belts, provided material for further bauxitisation. The largest cluster (623 ÷ 689 Ma) is of Neoproterozoic age, predominately from the Late Ediacaran and Cryogenian p.p.. The 900–540 Ma Pan-African orogenic cycle was followed by continental-scale uplift and erosion, leading to the deposition of thick Cambrian–Ordovician siliciclastic sequences that represent the most widespread detrital sequence ever deposited on continental crust and that now cover large parts of North Africa. These Cambrian–Ordovician sandstones contain a large population of Neoproterozoic zircons of Cryogenian age. Neoproterozoic zircons also occur in the youngest (Silurian–Mesozoic) sandstones of the Saharan Metacraton. These sandstones also contain 1.0 Ga detrital zircons, suggesting as the oldest zircons found in the Salento-type bauxite pebbles (866 Ma and 941 Ma in age) are younger representatives of the zircon cluster present in this sandstone unit.These zircon age determinations suggest that the source material for the Salento-type bauxite pebbles was a combination of magmatic material from a distant source and clastic material derived from a continental margin (North Africa). This result concurs with the Eu/Eu* vs. Sm/Nd binary diagram, on which bauxite pebbles fall close to a mixing curve with andesite and cratonic sandstone end-members. As our results indicate that material was sourced from the North African continental margin, we suggest that a continental bridge separated oceanic domains in the Late Cretaceous of the Peri-Tethyan domain.  相似文献   

14.
The Tomtor massif of Paleozoic ultramafic alkaline rocks and carbonatites is located in the northern part of the Sakha Republic (Yakutia). The massif (its total area is ~ 250 km2) is ~ 20 km in diameter, with a rounded shape and a concentrically zoned structure. The core of the massif consists of carbonatites surrounded by a discontinuous ring of ultramafic rocks and foidolites. The outer part is composed of alkali and nepheline syenites. All rocks are weathered and covered with eluvium, which is the thickest after carbonatites enriched in phosphates and REE. The weathering profile consists of four layers, from the top: kaolinite-crandallite, siderite, goethite, and francolite. The highest-grade ores are observed in the bedded deposit which fills depressions in “sagging” eluvium. The ores are laminated and cryptogranular, with high Nb, Y, Sc, and REE contents (on average, 4.5% Nb2O5, 7-10% REE2O3, 0.75% Y2O3, and 0.06% Sc2O3). The highest-grade ores are natural Nb and REE concentrates. The total REE content in some layers is > 10%. The morphologic features of the highest-grade phosphate ores from the northern part of the Burannyi site were studied. The ore-forming minerals belong to the pyrochlore group, crandallite group (goyazite), and monazite-Ce. The pyrochlore group minerals occur mainly as crystals that were completely replaced by barium-strontium pyrochlore and/or plumbopyrochlore but retained the original faces; also, they occur as numerous conchoidal fragments. The grains of the pyrochlore group minerals sometimes have a zonal structure, with an unaltered pyrochlore core and a reaction rim. Goyazite occurs predominantly as colloform grains. According to SEM and TEM data, monazite occurs in the ores as ~ 50 nm particles, which cover the outer part of halloysite tubes (800–3000 nm long and 300 nm in diameter) as a dense layer and make up peculiar biomorphic aggregates. The mineralogical data, the occurrence of biomorphic aggregates, and the close association of organic remains with ore minerals suggest that the high-grade ores of the Tomtor deposit, including the Burannyi site, resulted from a hydrothermal-sedimentary process with a presumably important role of bioaccumulation of REE phosphates.  相似文献   

15.
The Shilu Fe–Co–Cu ore district is situated in the western Hainan Province of south China. This district consists of the upper Fe-rich layers and the lower Co–Cu ores, which are mainly hosted within the Neoproterozoic Shilu Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Three facies of metamorphosed BIFs, the oxide, the silicate–oxide and the sulfide–carbonate–silicate, have been identified within the Shilu Group. The oxide banded iron formation (BIF) facies (quartz itabirites or Fe-rich ores) consists of alternating hematite-rich and quartz-rich microbands. The silicate–oxide BIF facies (amphibolitic itabirites or Fe-poor ores) comprises alternating millimeter to tens of meter scale, magnetite–hematite-rich bands with calc-silicate-rich macro- to microbands. The sulfide–carbonate–silicate BIF facies (Co–Cu ores) contain alternating cobaltiferous pyrite, cobaltiferous pyrrhotite and chalcopyrite macrobands to microbands mainly with dolomite–calcite, but also with minor sericite–quartz bands. Blasto-oolitic, pelletoidal, colloidal, psammitic, and cryptocrystalline to microcrystalline textures, and blasto-bedding structures, which likely represent primary sedimentation, are often observed in the Shilu BIF facies.The Shilu BIFs and interbedded host rocks are generally characterized by relatively low but variable ∑ REE concentrations, LREE depletion and/or MREE enrichment relative to HREE, and no Ce, Gd and Eu anomalies to strongly positive Ce, Gd and Eu anomalies in the upward-convex PAAS-normalized REY patterns, except for both the banded or impure dolostones with nil Ce anomaly to negative Ce anomalies and negative La anomalies, and the minor sulfide–carbonate–silicate BIF facies with moderately negative Eu anomalies. They also contain relatively low but variable HFSE abundances as Zr, Nb, Hf, Th and Ti, and relatively high but variable abundances of Cu, Co, Ni, Pb, As, Mn and Ba. The consistently negative εNd(t) values range from − 4.8 to − 8.5, with a TDM age of ca. 2.0 Ga. In line with the covariations between Al2O3 and TiO2, Fe2O3 + FeO and SiO2, Mn and Fe, Zr and Y/Ho and REE, and Sc and LREE, the geochemical and Sm–Nd isotopic features suggest that the precursors to the Shilu BIFs formed from a source dominated by seafloor-derived, high- to low temperature, acidic and reducing hydrothermal fluids but with variable input of detrital components in a seawater environment. Moreover, the involved detrital materials were sourced dominantly from an unknown, Paleoproterozoic or older crust, with lesser involvement from the Paleo- to Mesoproterozoic Baoban Group underlying the Shilu Group.The Shilu BIFs of various facies are interpreted to have formed in a shallow marine, restricted or sheltered basin near the rifted continental margin most likely associated with the break-up of Rodinia as the result of mantle superplume activity in South China. The seafloor-derived, periodically upwelling metalliferous hydrothermal plume/vent fluids under anoxic but sulfidic to anoxic but Fe2 +-rich conditions were removed from the plume/vent and accumulated in the basin, and then variably mixed with terrigenous detrital components, which finally led to rhythmic deposition of the Shilu BIFs.  相似文献   

16.
The Mombi bauxite deposit is located in 165 km northwest of Dehdasht city, southwestern Iran. The deposit is situated in the Zagros Simply Fold Belt and developed as discontinuous stratified layers in Upper Cretaceous carbonates (Sarvak Formation). Outcrops of the bauxitic horizons occur in NW-SE trending Bangestan anticline and are situated between the marine neritic limestones of the Ilam and Sarvak Formations. From the bottom to top, the deposit is generally consisting of brown, gray, pink, pisolitic, red, and yellow bauxite horizons. Boehmite, diaspore, kaolinite, and hematite are the major mineral components, while gibbsite, goethite, anatase, rutile, pyrite, chlorite, quartz, as well as feldspar occur to a lesser extent. The Eh–pH conditions during bauxitization in the Mombi bauxite deposit show oxidizing to reducing conditions during the Upper Cretaceous. This feature seems to be general and had a significant effect on the mineral composition of Cretaceous bauxite deposits in the Zagros fold belt. Geochemical data show that Al2O3, SiO2, Fe2O3 and TiO2 are the main components in the bauxite ores at Mombi and immobile elements like Al, Ti, Nb, Zr, Hf, Cr, Ta, Y, and Th were enriched while Rb, Ba, K, Sr, and P were depleted during the bauxitization process. Chondrite-normalized REE pattern in the bauxite ores indicate REE enrichment (ΣREE = 162.8–755.28 ppm, ave. ∼399.36 ppm) relative to argillic limestone (ΣREE = 76.26–84.03 ppm, ave. ∼80.145 ppm) and Sarvak Formation (ΣREE = 40.15 ppm). The REE patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48–2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the change of oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complexation of Ce4+ with carbonate compounds in the studied horizons. It seems that the variations in the chemistry of ore-forming solutions (e.g., Eh and pH), function of carbonate host rock as a geochemical barrier, and leaching degree of lanthanide-bearing minerals are the most important controlling factors in the distribution and concentration of REEs. Several lines of evidences such as Zr/Hf and Nb/Ta ratios as well as similarity in REE patterns indicate that the underlying marly limestone (Sarvak Formation) could be considered as the source of bauxite horizons. Based on mineralogical and geochemical data, it could be inferred that the Mombi deposit has been formed in a karstic environment during karstification and weathering of the Sarvak limy Formation.  相似文献   

17.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. The BIF shows alternating quartz-rich light and magnetite-rich dark bands with magnetite (15–65 vol.%), quartz (25–65 vol.%) and amphibole (15–30 vol.%) constituting the major minerals. Minor garnet, epidote, chlorite, calcite, biotite and pyrite occur locally. The BIF bands are interlayered with amphibolite, hornblende gneiss, biotite quartz schist, garnet biotite schist, biotite gneiss and leptynite, and are intruded by granites. LA-ICP-MS U–Pb dating on zircons separated from the BIF bands and the wallrocks constrains the depositional age as 2240–2193 Ma and metamorphic age as ~ 1864 Ma. The dominant composition of SiO2 + Fe2O3T (average value of 92.3 wt.%) of the BIF bands suggests their formation mainly through chemical precipitation. However, the widely varying contents of major elements such as Al2O3 (0.58–6.99 wt.%), MgO (1.00–3.86 wt.%), CaO (0.22–4.19 wt.%) and trace elements such as Rb (2.06–40.4 ppm), Sr (9.36–42.5 ppm), Zr (0.91–23.6 ppm), Hf (0.04–0.75 ppm), Cr (89.1–341 ppm), Co (2.94–30.4 ppm), and Ni (1.43–52.0 ppm) clearly indicate the incorporation of clastics, especially continental felsic clastics, as also confirmed by the presence of ancient detrital zircons in the BIF bands. When normalized against Post Archean Average Shale (PAAS), the seawater-like signatures of REE distribution patterns, such as LREE depletion, positive La and Y anomalies, and superchondritic Y/Ho ratios (average value of 36.3), support the deposition in seawater. Strong positive Eu anomalies (Eu/Eu*PAAS = 1.14–2.86) also suggest the participation of hydrothermal fluids. In addition, the sympathetic correlation between Cr, Co and Ni as well as the Co + Ni + Cu vs. ∑ REE and the Al2O3 vs. SiO2 relations further indicates that the iron and silica mainly originated from hydrothermal fluids. Combined with regional geological investigation and protolith restoration of the wallrocks, a continental rift environment is suggested for the Changyi BIF deposition. The appearance of negative CePAAS anomalies might suggest the influence of the Great Oxidation Event at the time of deposition. The Changyi BIF witnessed the major Paleoproterozoic rifting–collision events in the NCC and their unique distribution in the NCC contrasts with other examples elsewhere in the world.  相似文献   

18.
The oolitic ironstones ore deposit of Jebel Ank (central Tunisia), is a simply folded stratiform ore body of about 2.5–8 m thickness located in the upper part of the epicontinental Souar Formation (Late Eocene) and is covered by the continental Segui Formation (Mio-Pliocene). The deposit contains about 20 Mt of ore with an average grade of 50% Fe. Generally, oolitic iron deposition occurs in shallow water lagoonal environments. The Jebel Ank deposit lies between two regional disconformities (Late Eocene and Miocene), and is evidence of a transitional stage at the end of regional regression before renewed transgression. The footwall of the oolitic iron ore-bearing bed consists of a fine-grained sandstone bed (10–20 cm-thick) pinching out laterally westward into green clays. The hanging wall is composed of thin-bedded limestone and clay alternations (2–3.5 m-thick).Iron occurs in the form of cryptocrystalline goethite with limited Al-Fe substitution. The goethite contains around 48% Fe, 5% Al and up to 1.5% P. Jarosite, alunite and manganese minerals (cryptomelane, psilomelane and manjiorite) are supergene secondary minerals, probably related to descending surface fluids. These manganese minerals occur as accessory minerals with the goethite and are most abundant at the lowermost part of the succession showing varied morphologies (local cement, space filling and free centimeter sized nodules). Fe-oolites in the deposit are similar to those documented in many other oolitic ironstone deposits. The dominant Fe-oolite type (>90%) has a concentrically laminated cortex with no nucleus. The nuclei of the oolites that do have a nucleus are most commonly detrital quartz grains.Major elements in high grade samples (Fe2O3 > 65%) vary within a limited range and show higher concentrations of SiO2 (average 7.85%) and Al2O3 (average 5.1%), with minor TiO2, MnO, MgO, Na2O, K2O, and SO3 (less than 1%). PAAS-normalized trace elements of bulk samples and Fe-oolite generally show similar behavior, both are enriched in V, Co, Ni, Mo, As, Zn, and Y and are depleted in Cu, Rb, Zr, Nb, Ba, and Hf. Anomalous V, Cr, Ni, Zn, and REE-Y are correlated with goethite. PAAS-normalized REE-Y patterns of both bulk samples and Fe-oolite show slight HREE enrichment, positive Ce with negative Y anomalies.The mineralogy (goethite and cryptomelane) along with the geochemistry (Si vs. Al; As + Cu + Mo + Pb + V + Zn vs. Ni + Co binary plots; Zn–Ni–Co triangular diagram, REE-Y content and patterns and Ce/Ce1 vs. Nd and Ce/Ce1 vs. YN/HoN binary plots) of the studied oolitic ironstone are congruent with a hydrogenetic type. While two possible sources of iron for Jebel Ank ironstone can be proposed: (i) submarine weathering of glauconite-rich sandstone and (ii) detrital iron from adjacent continental hinterland, the later is the more plausible source of iron, based on paleogeographic setting, the occurrence of fine sandstone underlying the iron level, occurrence of Mn-ores in the lower part of the Fe-ores succession, high phosphorous, zinc, ∑REE-Y concentrations and Y/Ho ratios, and low La/Ce ratios.  相似文献   

19.
A 100–4000 m wide and 15 km long dike swarm, consisting of basalt and dolerite, occurs at the base of the Thelichi Formation in the Kohistan paleo-island arc terrane, north Pakistan. The dikes contain hornblende (altered from diopsidic-augite), diopsidic-augite (relics; ophitic to subophitic texture), chlorite, epidote, sphene, apatite, zircon, ilmenite, titanomagnetite and magnetite. The geochemistry reveals two groups of dikes: (1) Higher TiO2 (2.74–3.50 wt%), Na2O, Fe2O3 and lower Al2O3 (12.65–14.16 wt%) and MgO (3.73–5.04 wt%); (2) Lower TiO2 (1.24–2.05 wt%), Na2O, Fe2O3 and higher Al2O3 (14.02–16.52 wt%) and MgO (3.98–7.52 wt%). The MgO contents (3.73–7.52-wt%) show a variation in the dikes from relatively primitive to more evolved compositions. The dikes contain high amounts of both LILE and HFSE. The major, trace and rare-earth elements data confirm the MORB affinity and the back-arc basin origin of the dike swarm. The NW–SE orientation of the dike swarm and its 134 ± 3 Ma K–Ar age suggest the spreading axis of the back-arc basin in the Early Cretaceous.  相似文献   

20.
Medium to coarse-grained Neo-Proterozoic Nagthat siliciclastic rocks form a part of the Krol Formation in the Lesser Himalayan geotectonic zone. Fluid inclusion and geochemical studies have been carried out on the Nagthat siliciclastics from the Tons valley to determine their provenance during the Proterozoic and their recrystallisation during maximum burial to uplift. Fluid inclusion studies have been carried out on detrital, recrystallised quartz grains and quartz overgrowths. Major and trace element analyses of the siliciclastics, the relationships of SiO2 with various trace elements, and the association of various trace elements with mineral species suggest a granitic source for these siliciclastics. Primary Q1 aqueous brine inclusions and Q3 H2O–CO2 fluid with 0.9 gm/cm3 CO2 density in detrital quartz grains characterised the protolith of the sandstone as granite or metamorphic rocks. H2O–NaCl fluids participated in the cementation history, temperatures of quartz overgrowth from 198 to 232 °C show the effect of maximum burial. The re-equilibration of the primary fluid due to elevated internal pressure > confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration, decrepitation clusters, etc. During recrystallisation these inclusions were equilibrated at 187 ° and 235 °C in a restricted fluid of aqueous, moderately saline composition. The observed inclusion morphology is attributed to a decrease in external pressure related to isothermal decompression uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号