首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The activity of the central star of the Kepler-32 planetary system is studied using continuous 1141-day observations with the Kepler Space Telescope. The Kepler-32 system includes a slowly rotating Mdwarf (rotational period of 37.8 d) with a mass of 0.54M and five planets. One of the unique properties of the system is its compactness: the orbits of all five planets are less than a third of the size of the orbit of Mercury; the planet closest to the star is separated from it by only 4.3 stellar radii. Surface-temperature inhomogeneities of the central star are studied using precise photometric observations of Kepler-32, and their evolution traced. In total, 42 624 individual brightness measurements in the 1141-day (3.1-year) observing interval were selected for the analysis. The calculated amplitude power spectra for the first and second halves of the interval of the Kepler-32 observations indicate appreciable variability of the photometric period, corresponding to the evolution of active regions at various latitudes on the stellar surface. Evidence for the existence of two active regions on the stellar surface separated in phase by 0.42 has been found. Time intervals in which the longitudes of the active regions changed (“flip-flops”) with durations of the order of 200–300 days have been established. The spotted area of the star was, on average, about 1% of the total visible surface, and varied from 0.3 to 1.7%. The results for the dwarf Kepler-32 are compared with those from a spectropolarimetric survey of 23 M dwarfs, including both fully convective stars and stars with weakly radiative cores. For a more detailed comparison, temperature inhomogeneities on the surface of one of the survey stars, DS Leo, was reconstructed using the ground-based observations (316 individual measurements of the V-band brightness of the star during seven observing seasons in an all-sky automated survey). The general properties and evolution of the active regions on DS Leo and Kepler-32 are considered. The positions of the active regions on the surface of Kepler-32 yields no evidence for differential rotation of this star. The possibility of detecting the magnetic field of Kepler-32 is proposed. The analysis of the photometric data for Kepler-32 are also compared to the previous results for the fully convective, low-mass M dwarfs GJ 1243 and LHS 6351. This demonstrates that the observed manifestations of activity on Kepler-32 correspond to those for active G-K stars and to M dwarfs with masses of the order of 0.5M , rather than Mdwarfs with masses from 0.2 to 0.5M .  相似文献   

2.
Astronomy Reports - The interpretation of high-precision transit light curves of binary systems with exoplanets Kepler-5b, Kepler-6b, and Kepler-7b is performed for three different epochs. It has...  相似文献   

3.
Abubekerov  M. K.  Gostev  N. Yu. 《Astronomy Reports》2021,65(11):1122-1128
Astronomy Reports - Using the transit light curves of Kepler-5b, Kepler-6b, Kepler-7b, Kepler-8b as examples, we study the effect of the primary normalization errors regarding the observed transit...  相似文献   

4.
Kondratyev  B. P.  Kornoukhov  V. S. 《Astronomy Reports》2022,66(11):1063-1073
Astronomy Reports - The new analytical R-toroid method is applied to study the apsidal and nodal precession of test orbits in the circumbinary exo-systems Kepler-16, Kepler-35, Kepler-38,...  相似文献   

5.
Astronomy Reports - The activity of five young stars possessing planetary systems is studied: K2-231, EPIC 219 388 192, K2-136, Kepler-66, and Kepler-67. The ages of these objects were found from...  相似文献   

6.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

7.
We have undertaken a statistical study of the component mass ratios and the orbital eccentricities of WR + O close binary, detached main-sequence (DMS), contact early-type (CE), and semidetached (SD) systems. A comparison of the characteristics of WR + O systems and of DMS, CE, and SD systems has enabled us to draw certain conclusions about the evolutionary paths of WR + O binaries and to demonstrate that up to 90% of all known WR + O binaries formed as a result of mass transfer in massive close O + O binary systems. Since there is a clear correlation between the component masses in SD systems with subgiants, the absence of an anticorrelation between the masses of the WR stars and O stars in WR + O binaries cannot be considered evidence against the formation of WR + O binaries via mass transfer. The spectroscopic transitional orbital period P tr sp corresponding to the transition from nearly circular orbits (e sp<0.1) to elliptical orbits (e sp≥0.1) is ~14d for WR + O systems and ~2d–3d for OB + OB systems. The period range in which all WR + O orbits are circular \((1\mathop d\limits_. 6 \leqslant P \leqslant 14^d )\) is close to the range for SD systems with subgiants, \(0\mathop d\limits_. 7 \leqslant P \leqslant 15^d \). The large difference between the P tr sp values for WR + O and OB + OB systems suggests that a mechanism of orbit circularization additional to that for OB + OB systems at the DMS stage (tidal dissipation of the orbital energy due to radiative damping of the dynamical tides) acts in WR + O binaries. It is natural to suggest mass transfer in the parent O + O binaries as this supplementary orbit-circularization mechanism. Since the transitional period between circular and elliptical orbits for close binaries with convective envelopes and ages of 5×109 years is \(P_{tr} = 12\mathop d\limits_. 4\), the orbits of most known SD systems with subgiants had enough time to circularize during the DMS stage, prior to the mass transfer. Thus, for most SD systems, mass transfer plays a secondary role in circularization of their orbits.In many cases, the initial orbital eccentricities of the O + O binary progenitors of WR + O systems are preserved, due to the low viscosity of the O-star envelopes and the short timescale for their nuclear evolution until the primary O star fills its Roche lobe and the mass transfer begins. The mass transfer in the parent O + O systems is short-lived, and the number of orbital cycles during the early mass-transfer stage is relatively low (lower than for the progenitors of SD systems by three or four orders of magnitude). The continued transfer of mass from the less massive to the more massive star after the component masses have become equal leads to the formation of a WR + O system, and the orbit's residual eccentricity increases to the observed value. The increase of the orbital eccentricity is also facilitated by variable radial mass loss via the wind from the WR star in the WR + O system during its motion in the elliptical orbit. The result is that WR + O binaries can have considerable orbital eccentricities, despite their intense mass transfer. For this reason, the presence of appreciable eccentricities among WR + O binaries with large orbital periods cannot be considered firm evidence against mass transfer in the parent O + O binary systems. Only for the WR + O binaries with the longest orbital periods (4 of 35 known systems, or 11 %) can the evolution of the parent O + O binaries occur without filling of the Roche lobe by the primary O star, being governed by radial outflow in the form of the stellar wind and possibly by the LBV phenomenon, as in the case of HD 5980.  相似文献   

8.
We estimate the extent to which there is an evolutionary relationship between detached main-sequence binaries and ~KW, KW, and KP contact binaries in the first mass-exchange phase. The current and initial distributions of close binaries of these types are calculated per unit volume of space in the vicinity of the Sun and used to demonstrate evolutionary transitions from low-mass, short-period, detached systems to contact binaries.  相似文献   

9.
The observed properties of Wolf-Rayet stars and relativistic objects in close binary systems are analyzed. The final masses M CO f for the carbon-oxygen cores of WR stars in WR + O binaries are calculated taking into account the radial loss of matter via stellar wind, which depends on the mass of the star. The analysis includes new data on the clumpy structure of WR winds, which appreciably decreases the required mass-loss rates $\dot M_{WR}$ for the WR stars. The masses M CO f lie in the range (1–2)M –(20–44)M and have a continuous distribution. The masses of the relativistic objects M x are 1–20M and have a bimodal distribution: the mean masses for neutron stars and black holes are 1.35 ± 0.15M and 8–10M , respectively, with a gap from 2–4M in which no neutron stars or black holes are observed in close binaries. The mean final CO-core mass is $\overline M _{CO}^f = 7.4 - 10.3M_ \odot$ , close to the mean mass for the black holes. This suggests that it is not only the mass of the progenitor that determines the nature of the relativistic object, but other parameters as well-rotation, magnetic field, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binaries that may have low-mass companions (main-sequence or subgiant M-A stars) are identified; these could be the progenitors of low-mass X-ray binaries with neutron stars and black holes.  相似文献   

10.
Astronomy Reports - Variations in the orbital period of eclipsing binaries RY Aqr, AK Vir, and AX Vul are studied. It is shown these variations can be represented with equal accuracy in two ways:...  相似文献   

11.
We have found a mass—luminosity relation for the OB components of massive X-ray binaries that is a good estimator of the masses of these evolutionarily important binaries. Analysis of this relation showed a systematic luminosity excess of ≈1m for the OB components in these systems. No such excess was discovered for the evolutionarily related WR + O binaries, which also undergo mass exchange between their components and are the immediate precursors of X-ray binaries. A study of possible origins of the luminosity excess suggests that the most likely explanation is an X-ray luminosity related selection effect for massive X-ray binaries. Estimates show that the probability of detecting X-ray binary increases due to the enhancement of the stellar wind, which increases the efficiency of accretion by the relativistic companion while the optical component evolves along the main sequence. This can explain the magnitude of the observed luminosity excess and the position of the optical components of X-ray binaries in the luminosity—radius plane.  相似文献   

12.
We consider a mechanism for the formation of superhumps in the TV Col system, based on the possible existence of a precessional spiral wave in the accretion disk of the system. This mechanism can act in binaries with arbitrary component-mass ratios, and our precessional spiral wave model can be applied to explain observed superhumps of all types.  相似文献   

13.
We describe the results of a statistical approach to analyzing the combined radial-velocity curves of X-ray binaries with OB supergiants in a Roche model, both with and without allowance for the anisotropy of the stellar wind. We present new mass estimates for the X-ray pulsars in the close binary systems Cen X-3, LMC X-4, SMC X-1, 4U 1538-52, and Vela X-1.  相似文献   

14.
The integration of Indigenous cultural rights with biodiversity protection can be explored in multiple dimensions and occupy contested grounds. This paper outlines the results of a research project that applied discourse analysis as both a theoretical and methodological tool to examine the power and knowledge relations within a case study of the development of a turtle and dugong hunting management plan by the Hope Vale Aboriginal Community in northern Australia. This paper reports on the results of this analysis and shows how multiple binaries exist within and between the different actors in a resource management problem. Findings show that contested constructions of the environment are hugely influential to the success or failure of natural resource management endeavours. The ontological frames that are adopted in supporting Indigenous peoples to manage their land and seas must be understood, otherwise there is a risk of reinforcing the very binaries that need to be avoided.  相似文献   

15.

Variations of the orbital periods of the eclipsing binaries RY Aur, GG Cas, RS Lep, and RV Tri are analyzed. The period variations in all of these systems can be represented as a superposition of a secular period decrease and cyclic variations that can be explained with the light-time effect due to the presence of a third body in the system. The secular period decrease could be due to magnetic braking.

  相似文献   

16.
The dynamics of weakly heirarchical triple stars with equal masses are considered. Full spectra of the Lyapunov exponents are found via numerical integration of the orbits, for various initial configurations of the systemin the planar problem and with initial conditions in the vicinity of the 2 : 1 resonance (i.e., with the initial ratios of the periods of the outer and inner binaries being close to 2 : 1). Dependences between the Lyapunov time and the disruption time of the systemare constructed for initial conditions near and far from resonance. The character of these relationships is different near and far from resonance, corresponding to two kinds of Hamiltonian intermittency. The trajectories “stick” to the regular component in phase space near resonance, while this effect is not dominant far from resonance. Analysis of the distributions of the disruption times of the triple systems for initial conditions near and far from resonance confirm these conclusions.  相似文献   

17.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

18.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

19.
Astronomy Reports - Variations of the orbital period of the eclipsing binaries TT Del, EU Hya, and SV Tau have been studied. It has been shown that they can be represented by cyclic fluctuations...  相似文献   

20.
A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号