首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of ?1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately ?0.80 K. Over land, albedo bias contributes ?1.20 K to the averaged cold bias of ?1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model’s simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.  相似文献   

2.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

3.
The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(T_(as)) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(T_s) over the TP. The cold biases are larger in T_(as) than in T_s, and are larger over the western TP. By decomposing the T_s bias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.  相似文献   

4.
Summary A parameterization of shortwave and longwave radiation fluxes derived from detailed radiative transfer models is included in a global primitive equation statistical-dynamical model (SDM) with two bulk atmospheric layers. The model is validated comparing the model simulations with the observed mean annual and seasonal zonally averaged climate. The results show that the simulation of the shortwave and longwave radiation fluxes matches well with the observations. The SDM variables such as surface and 500 hPa temperatures, zonal winds at 250 hPa and 750 hPa, vertical velocity at 500 hPa and precipitation are also in good agreement with the observations. A comparison between the results obtained with the present SDM and those with the previous version of the model indicates that the model results improved when the parameterization of the radiative fluxes based on detailed radiative transfer models are included into the SDM.The SDM is used to investigate its response to the greenhouse effect. Sensitivity experiments regarding the doubling of CO2 and the changing of the cloud amount and height are performed. In the case 2×CO2 the model results are consistent with those obtained from GCMs, showing a warming of the climate system. An enhancement of the greenhouse effect is also noted when the cloud layer is higher. However, an increase of the cloud amount in all the latitude belts provokes an increase of the surface temperature near poles and a decrease in all the other regions. This suggests that the greenhouse effect overcomes the albedo effect in the polar latitudes and the opposite occurs in other regions. In all the experiments the changes in the surface temperature are larger near poles, mainly in the Southern Hemisphere.With 8 Figures  相似文献   

5.
Previous studies have found amplified warming over Europe-West Asia and Northeast Asia in summer since the mid-1990s relative to elsewhere on the Eurasian continent, but the cause of the amplification in these two regions remains unclear. In this study, we compared the individual contributions of influential factors for amplified warming over these two regions through a quantitative diagnostic analysis based on CFRAM (climate feedback-response analysis method). The changes in surface air temperature are decomposed into the partial changes due to radiative processes (including CO2concentration, incident solar radiation at the top of the atmosphere, surface albedo, water vapor content, ozone concentration, and clouds) and non-radiative processes (including surface sensible heat flux, surface latent heat flux, and dynamical processes). Our results suggest that the enhanced warming over these two regions is primarily attributable to changes in the radiative processes, which contributed 0.62 and 0.98 K to the region-averaged warming over Europe-West Asia (1.00 K) and Northeast Asia (1.02 K), respectively. Among the radiative processes, the main drivers were clouds, CO2concentration, and water vapor content. The cloud term alone contributed to the mean amplitude of warming by 0.40 and0.85 K in Europe-West Asia and Northeast Asia, respectively. In comparison, the non-radiative processes made a much weaker contribution due to the combined impact of surface sensible heat flux, surface latent heat flux, and dynamical processes, accounting for only 0.38 K for the warming in Europe-West Asia and 0.05 K for the warming in Northeast Asia.The resemblance between the influential factors for the amplified warming in these two separate regions implies a common dynamical origin. Thus, this validates the possibility that they originate from the Silk Road pattern.  相似文献   

6.
《大气与海洋》2013,51(3):129-139
Abstract

Both the earth‐reflected shortwave and outgoing longwave radiation (OLR) fluxes at the top of the atmosphere (TOA) as well as surface‐absorbed solar fluxes from Canadian Regional Climate Model (CRCM) simulations of the Mackenzie River Basin for the period March 2000 to September 2003 are compared with the radiation fluxes deduced from satellite observations. The differences between the model and satellite solar fluxes at the TOA and at the surface, which are used in this paper to evaluate the CRCM performance, have opposite biases under clear skies and overcast conditions, suggesting that the surface albedo is underestimated while cloud albedo is overestimated. The slightly larger differences between the model and satellite fluxes at the surface compared to those at the TOA indicate the existence of a small positive atmospheric absorption bias in the model. The persistent overestimation of TOA reflected solar fluxes and underestimation of the surface‐absorbed solar fluxes by the CRCM under all sky conditions are consistent with the overestimation of cloud fraction by the CRCM. This results in a larger shortwave cloud radiative forcing (CRF) both at the TOA and at the surface in the CRCM simulation. The OLR from the CRCM agrees well with the satellite observations except for persistent negative biases during the winter months under all sky conditions. Under clear skies, the OLR is slightly underestimated by the CRCM during the winter months and overestimated in the other months. Under overcast conditions the OLR is underestimated by the CRCM, suggesting an underestimation of cloud‐top temperature by the CRCM. There is an improvement in differences between model and satellite fluxes compared to previously reported results largely because of changes to the treatment of the surface in the model.  相似文献   

7.
Land surface processes take place on the interface between the earth and atmosphere, exerting significant influences on the weather and climate. Correct modeling of these processes is important to numerical weather forecast and climate prediction. In order to obtain a more thorough understanding of the land surface processes over the Gobi landscape, we evaluated the performance of the Common Land Model (CoLM) at Dunhuang station in Gansu Province of China to determine whether the model formulation, driven by observational data, is capable of simulating surface fluxes over the underlying desert surface. In comparison with the enhanced observation data collected at Dunhuang station over the period 22–28 August 2008, the results showed that the surface albedo simulated by CoLM was larger than that in the observation, and the simulated surface temperature was lower than the observed. After the measured values were used to correct the surface albedo, the solar radiation absorbed by the ground surface was more consistent with the measurements. A new empirical relationship of the surface thermal exchange coefficient rah was used to modify the thermal aerodynamic impedance. The simulated soil surface temperature became significantly closer to the observed value, and the simulated surface sensible heat as well as net radiative fluxes were also improved.  相似文献   

8.
G J Boer 《Climate Dynamics》1993,8(5):225-239
The increase in the vigor of the hydrological cycle simulated in a 2 × CO2 experiment with the Canadian Climate Centre general circulation model is smaller than that obtained by other models which have similar increases in mean surface temperature. The surface energy budget, which encompasses also the moisture budget for the oceans, is analyzed. Changes in the net radiative input to and sensible heat flux from the surface act to warm it. This is balanced, at the new equilibrium, by a change in the latent heat flux which acts to cool it. Although this same general behavior is seen in other models, the increase in radiative input to the surface in the CCC GCM is smaller than in other models while the change in the sensible heat flux is of similar size. As a consequence, the latent heat flux required for balance is smaller. The comparatively small increase in the net radiative input at the surface occurs because of a decrease in the solar component. On average the decrease in solar input in the tropical region outweighs the higher latitude increase associated with the snow/ice albedo feedback. The notable tropical decrease in solar input occurs because the albedo of the clouds increase enough in this region to outweigh a small decrease in cloud amount. The increase in cloud albedo in the warmer and moister tropical atmosphere is a consequence of the parameterized cloud optical properties in the model which play an important role in the regulation of the surface energy and moisture budgets. The results demonstrate some of the consequences of the negative feedback mechanism associated with increasing cloud albedo in the model. They also suggest that the simulated change in the vigor of the hydrological cycle is not a simple function of the average increase in surface temperature but is a consequence of all of the processes in the model which control the available energy at the surface as a function of latitude.  相似文献   

9.
The diurnal surface temperature range(DTR) has become significantly smaller over the Tibetan Plateau(TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades.Based on ERA-Interim reanalysis data covering 1979–2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature(Tmin) and a weak cooling of the daily maximum surface temperature(Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method—the Coupled Surface–Atmosphere Climate Feedback Response Analysis Method(CFRAM)—indicates that changes in radiative processes are mainly responsible for the decreased DTR over the TP. In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative warming during nighttime than daytime. Contributions from the changes in all radiative processes(over-2?C) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime(approximately 2.5?C), but are co-contributed by the changes in atmospheric dynamics(approximately-0.4?C) and the stronger increased latent heat flux during daytime(approximately-0.8?C). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.  相似文献   

10.
A simple yet more accurate semiempirical model is developed to calculate solar radiative flux in the optically inhomogeneous atmosphere. In the model a parameterized expression of spherical reflectance and transmitance of the atmosphere is confirmed, and the weighted single scatter albedo and weighted asymmetric factor are introduced to fit four empirical correction factors responsible for radiative fluxes in the inhomogeneous atmosphere. For both clean and turbid models, there are 120060 sets of radiative flux simulations for accuracy checks of the model, which cover 0-50 cloud optical depths, 0-0.8 surface reflectance, Junge and Log-normal aerosol size distributions, and 0-0.05 imaginary parts of aerosol refractive indexes. In case of the homogeneous atmosphere, standard errors of the 120060 upward fluxes from the present model are 1.08% and 1.04% for clean and turbid aerosol models, respectively; and those of the downward fluxes are 4.12% and 3.31%. In case of the inhomogeneous atmosphere, standard errors of the upw ard fluxes from the present model are 3.01% and 3.48% for clean and turbid aerosol models.respectively; and those of the downward fluxes are 4.54% and 4.89%, showing a much better accuracy than the results calculated by using an assumption of the homogeneous atmosphere.  相似文献   

11.
Summary Measurements of the surface heat budget were conducted on an ice cap in the Andes of Southern Peru at 5645 m during an expedition in July 1977. Because of the high surface albedo, net software radiative gain is nearly offset by the longwave loss in the average over the diurnal cycle. The diurnal temperature wave has at the surface an amplitude of about 5°C, and by 50 cm depth this is nearly dampened out. During the day, the shortwave radiative gain is in part used to balance the longwave loss, some heat is stored in the top snow layer and lost by sensible heat transfer to the overlying atmosphere, and the greater part fuels the sublimation. At night, the longwave radiative loss is not completely compensated by heat depletion and downward directed sensible heat transfer. This deficit is made up by the downward transfer of latent heat, resulting in heat release at the surface and deposition. Regarding the mass balance, the nighttime deposition approximately cancels the daytime sublimation. At lower elevations of the ice cap, albedo is much less, allowing larger absorption of solar radiation. As a consequence, more energy is available for ablation. Melting occurs during the day, so that re-freezing and concurrent latent heat release can help to compensate the longwave radiative loss at night.With 4 Figures  相似文献   

12.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

13.
Summary The relationship between clouds and the surface radiative fluxes over the Arctic Ocean are explored by conducting a series of modelling experiments using a one-dimensional thermodynamic sea ice model. The sensitivity of radiative flux to perturbations in cloud fraction and cloud optical depth are determined. These experiments illustrate the substantial effect that clouds have on the state of the sea ice and on the surface radiative fluxes. The effect of clouds on the net flux of radiation at the surface is very complex over the Arctic Ocean particularly due to the presence of the underlying sea ice. Owing to changes in surface albedo and temperature associated with changing cloud properties, there is a strong non-linearity between cloud properties and surface radiative fluxes. The model results are evaluated in three different contexts: 1) the sensitivity of the arctic surface radiation balance to uncertainties in cloud properties; 2) the impact of interannual variability in cloud characteristics on surface radiation fluxes and sea ice surface characteristics; and 3) the impact of climate change and the resulting changes in cloud properties on the surface radiation fluxes and sea ice characteristics.With 11 Figures  相似文献   

14.
Storm tracks play a major role in regulating the precipitation and hydrological cycle in midlatitudes. The changes in the location and amplitude of the storm tracks in response to global warming will have significant impacts on the poleward transport of heat, momentum and moisture and on the hydrological cycle. Recent studies have indicated a poleward shift of the storm tracks and the midlatitude precipitation zone in the warming world that will lead to subtropical drying and higher latitude moistening. This study agrees with this key feature for not only the annual mean but also different seasons and for the zonal mean as well as horizontal structures based on the analysis of Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model simulations. Further analyses show that the meridional sensible and latent heat fluxes associated with the storm tracks shift poleward and intensify in both boreal summer and winter in the late twenty-first century (years 2081?C2100) relative to the latter half of the twentieth century (years 1961?C2000). The maximum dry Eady growth rate is examined to determine the effect of global warming on the time mean state and associated available potential energy for transient growth. The trend in maximum Eady growth rate is generally consistent with the poleward shift and intensification of the storm tracks in the middle latitudes of both hemispheres in both seasons. However, in the lower troposphere in northern winter, increased meridional eddy transfer within the storm tracks is more associated with increased eddy velocity, stronger correlation between eddy velocity and eddy moist static energy, and longer eddy length scale. The changing characteristics of baroclinic instability are, therefore, needed to explain the storm track response as climate warms. Diagnosis of the latitude-by-latitude energy budget for the current and future climate demonstrates how the coupling between radiative and surface heat fluxes and eddy heat and moisture transport influences the midlatitude storm track response to global warming. Through radiative forcing by increased atmospheric carbon dioxide and water vapor, more energy is gained within the tropics and subtropics, while in the middle and high latitudes energy is reduced through increased outgoing terrestrial radiation in the Northern Hemisphere and increased ocean heat uptake in the Southern Hemisphere. This enhanced energy imbalance in the future climate requires larger atmospheric energy transports in the midlatitudes which are partially accomplished by intensified storm tracks. Finally a sequence of cause and effect for the storm track response in the warming world is proposed that combines energy budget constraints with baroclinic instability theory.  相似文献   

15.
A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.  相似文献   

16.
The authors examine the Indian Ocean sea surface temperature(SST) biases simulated by a Flexible Regional Ocean Atmosphere Land System(FROALS) model.The regional coupled model exhibits pronounced cold SST biases in a large portion of the Indian Ocean warm pool.Negative biases in the net surface heat fluxes are evident in the model,leading to the cold biases of the SST.Further analysis indicates that the negative biases in the net surface heat fluxes are mainly contributed by the biases of sensible heat and latent heat flux.Near-surface meteorological variables that could contribute to the SST biases are also examined.It is found that the biases of sensible heat and latent heat flux are caused by the colder and dryer near-surface air in the model.  相似文献   

17.
The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.  相似文献   

18.
The hydrological cycle in the ECMWF short range forecasts   总被引:1,自引:0,他引:1  
Precipitation and latent heat flux forecasts by the European Centre for Medium Range Weather Forecasts (ECMWF) model have been compared with other estimates of these quantities. In the Northern Hemisphere extra-tropics the latent heat flux over oceans and the precipitation over continents in the short range forecasts are probably good estimates of the truth. The day-to-day as well as the interannual variability in these latitudes seem to be realistic.In the Southern Hemisphere extra-tropics there is a strong spin-up in the precipitation forecasts probably with too low precipitation amounts in the short range forecasts. It is speculated that inconsistent use of satellite data leads to a weakening of large-scale rising motions between 40 and 60°S. Also the latent heat flux in these latitudes is probably too low due to a too moist 1000 mb humidity analysis.Over subtropical deserts the precipitation amounts in the forecasts agree with climatological estimates. Contrary to climatological estimates this precipitation is not evaporated but runs off.In the tropics, especially over mountainous areas, the short range forecasts (average for the first 24 h) with the present model tend to overpredict precipitation amounts, but still with reasonable distributions. Averages between days 1 and 2 probably give a good estimate of the truth except over the eastern Pacific where there is an overestimation, also in the medium range forecasts. Strong underestimation of latent heat fluxes over tropical oceans in the short range forecasts have been considerably reduced with a recent model change. There are still areas, e.g. the Southern Hemisphere subtropical Pacific, with too low evaporation due to too moist 1000 mb analyses probably in connection with an inconsistent use of satellite observations.The interannual variability of monthly mean evaporation and precipitation in the short range forecasts reflects partly atmospheric anomalies, but especially in the tropics, and also larger amplitude variations due to changes in the analysis/forecasting scheme.  相似文献   

19.
The current state-of-the-art general circulation models, including several of those used by the IPCC, show considerable biases in the simulated present day high-latitude climate compared to observations and reanalysis data. These biases are most pronounced during the winter season. We here employ ideal vertical profiles of temperature and wind from turbulence-resolving simulations to perform a priori studies of the first-order eddy-viscosity closure scheme employed in the ARPEGE/IFS model. This reveals that the coarse vertical resolution (31 layers) of the model cannot be expected to realistically resolve the Arctic stable boundary layer. The curvature of the Arctic inversion and thus also the vertical turbulent-exchange processes cannot be reproduced by the coarse vertical mesh employed. To investigate how turbulent vertical exchange processes in the Arctic boundary layer are represented by the model parameterization, a simulation with high vertical resolution (90 layers in total) in the lower troposphere is performed. Results from the model simulations are validated against data from the ERA-40 reanalysis. The dependence of the surface air temperature on surface winds, surface energy fluxes, free atmosphere stability and boundary layer height is investigated. The coarse-resolution run reveals considerable biases in these parameters, and in their physical relations to surface air temperature. In the simulation with fine vertical resolution, these biases are clearly reduced. The physical relation between governing parameters for the vertical turbulent-exchange processes improves in comparison with ERA-40 data.  相似文献   

20.
发展了一个计算非均一大气条件下太阳辐射通量的一个简单而又精确的模式,其中包括关于大气球反射率与透过率的一个参数化表达式,并引入加权一次散射反照率和加权不对称因子,用于拟合非均一大气条件下计算辐射通量的四个经验订正因子。对清洁和浑浊的两类大气,都具有120060组的辐射通量模拟试验,以检验本模式的精度。这些模拟试验覆盖0-50的云光学厚度、0-0.8地表反射率、Junge和对数正态的气溶胶谱分布、-0.05气溶胶折射率虚部。在均一大气条件下,由本模式计算的120060组向上通量的标准差对清洁和浑浊两类大气分别为1.08%和1.04%;而向下通量的标准差分别为4.12%和3.31%。在非均一大气条件下,由本模式计算的向上通量的标准差对清洁和浑浊两类大气分别为3.01%和3.48%;而向下通量的标准差分别为4.54%和4.89%,其精度远优于均一假设下的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号