首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.  相似文献   

2.
用矢量有限元法模拟和分析了电各向异性倾斜沉积岩层的随钻测井电磁响应,为很好地模拟钻铤、井眼和激励线圈等,采用了基于圆柱坐标下的六面体剖分;同时采用了高阶叠层矢量基函数来描述每个剖分单元内的场,有利于减少剖分单元数和未知量.三维有限元程序采用数值模式匹配(当处于简单地层时)以及时域有限差分法计算的结果进行了验证,显示吻合非常好.最后仿真了不同各向异性系数和不同倾角的各向异性地层的随钻电阻率测井响应,有助于对各向异性及地层倾角的校正,以及对储层作出正确评价.  相似文献   

3.
本文采用广义反射系数法推导了水平层状各向异性地层中电磁场的积分解析解,并利用快速汉克尔变换技术实现了三维感应仪器测井响应的快速计算.三维感应测井响应与地层水平电导率、垂直电导率和井斜角及仪器方位角同时有关,单一分量的测井曲线不能满足资料解释的需要.通过对仪器测量分量响应特征的考察,本文提出了一种基于组合量测井曲线的资料直观解释方法.数值模拟显示,交叉分量相关组合量可准确划分地层纵向边界,并可直观识别各向异性层;与单独分量相比,主分量相关组合量提高了纵向分辨率、减弱了与地层电导率参数的非线性关系.  相似文献   

4.
A comprehensive controlled source electromagnetic (CSEM) modelling study, based on complex resistivity structures in a deep marine geological setting, is conducted. The study demonstrates the effects of acquisition parameters and multi‐layered resistors on CSEM responses. Three‐dimensional (3D) finite difference time domain (FDTD) grid‐modelling is used for CSEM sensitivity analysis. Interpolation of normalized CSEM responses provides attributes representing relative sensitivity of the modelled structures. Modelling results show that fine grid, 1 × 1 km receiver spacing, provides good correlations between CSEM responses and the modelled structures, irrespective of source orientation. The resolution of CSEM attributes decreases for receiver spacing >2 × 2 km, when using only in‐line data. Broadside data in the grid geometry increase data density by 100 – approximately 200% by filling in in‐line responses and improve the resolution of CSEM attributes. Optimized source orientation (i.e., oblique to the strike of an elongated resistor) improves the structural definition of the CSEM anomalies for coarse‐grid geometries (receiver spacing ≥3 × 3 km). The study also shows that a multi‐resistor anomaly is not simply the summation but a cumulative response with mutual interference between constituent resistors. The combined response of constituent resistors is approximately 50% higher than the cumulative response of the multi‐resistor for 0.5 Hz at 4000 m offset. A gradual inverse variation of offset and frequency allows differentiation of CSEM anomalies for multi‐layered resistors. Similar frequency‐offset variations for laterally persistent high‐resistivity facies show visual continuity with varying geometric expressions. 3D grid‐modelling is an effective and adequate tool for CSEM survey design and sensitivity analysis.  相似文献   

5.
为研究双轴各向异性介质多分量感应测井响应特征,本文基于三重傅里叶变换,推导任意方向偶极子源的谱域电磁场解析式;采用围线积分方法,自适应截断积分区间,结合谱域电磁场周期特性,实现三重傅里叶变换的精确快速积分;进而,针对双轴各向异性倾斜地层,模拟研究不同纵横向各向异性条件多分量感应测井响应特征.结果表明:利用谱域内电磁场在周向的周期特性简化解析式,可将计算速度提高4倍;自适应截断积分区间方法保证了计算精度,并极大地减少了积分节点数.对于倾斜双轴各向异性介质,倾角较大时,共面分量可反映地层横向各向异性,同轴分量可反映地层纵向各向异性;倾角较小时,同轴分量可反映地层横向各向异性,共面分量可反映地层纵向各向异性.  相似文献   

6.
I introduce a new explicit form of vertical seismic profile (VSP) traveltime approximation for a 2D model with non‐horizontal boundaries and anisotropic layers. The goal of the new approximation is to dramatically decrease the cost of time calculations by reducing the number of calculated rays in a complex multi‐layered anisotropic model for VSP walkaway data with many sources. This traveltime approximation extends the generalized moveout approximation proposed by Fomel and Stovas. The new equation is designed for borehole seismic geometry where the receivers are placed in a well while the sources are on the surface. For this, the time‐offset function is presented as a sum of odd and even functions. Coefficients in this approximation are determined by calculating the traveltime and its first‐ and second‐order derivatives at five specific rays. Once these coefficients are determined, the traveltimes at other rays are calculated by this approximation. Testing this new approximation on a 2D anisotropic model with dipping boundaries shows its very high accuracy for offsets three times the reflector depths. The new approximation can be used for 2D anisotropic models with tilted symmetry axes for practical VSP geometry calculations. The new explicit approximation eliminates the need of massive ray tracing in a complicated velocity model for multi‐source VSP surveys. This method is designed not for NMO correction but for replacing conventional ray tracing for time calculations.  相似文献   

7.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

8.
为快速有效地研究、考察各向异性地层条件下多分量感应测井的响应特征,本文利用电场标势与矢势的有限体积法研制出三维频率域电磁场响应的数值模拟算法,克服由低频发射或高阻地层产生的低感应数问题,有效提高了三维电磁数值模拟算法的应用范围和计算效率.首先利用电场的标势与矢势将Maxwell方程转化为满足库仑规范条件的耦合势Helmholtz方程,以Yee氏交错非均匀网格中不同位置上的节点为中心建立四种控制体积单元,通过对控制体积单元中电磁场与电导率的积分平均实现耦合势方程和磁偶极子旋度的离散,并得到一个对角占优的大型稀疏复线性代数方程组,然后,通过不完全LU分解预处理和稳定双共轭梯度法快速求解离散方程.数值结果证明了该算法的有效性,并进一步考查了仪器偏心、倾斜井、垂直裂缝等复杂条件下多分量感应的响应特征.  相似文献   

9.
The electromagnetic response of a horizontal electric dipole transmitter in the presence of a conductive, layered earth is important in a number of geophysical applications, ranging from controlled‐source audio‐frequency magnetotellurics to borehole geophysics to marine electromagnetics. The problem has been thoroughly studied for more than a century, starting from a dipole resting on the surface of a half‐space and subsequently advancing all the way to a transmitter buried within a stack of anisotropic layers. The solution is still relevant today. For example, it is useful for one‐dimensional modelling and interpretation, as well as to provide background fields for two‐ and three‐dimensional modelling methods such as integral equation or primary–secondary field formulations. This tutorial borrows elements from the many texts and papers on the topic and combines them into what we believe is a helpful guide to performing layered earth electromagnetic field calculations. It is not intended to replace any of the existing work on the subject. However, we have found that this combination of elements is particularly effective in teaching electromagnetic theory and providing a basis for algorithmic development. Readers will be able to calculate electric and magnetic fields at any point in or above the earth, produced by a transmitter at any location. As an illustrative example, we calculate the fields of a dipole buried in a multi‐layered anisotropic earth to demonstrate how the theory that developed in this tutorial can be implemented in practice; we then use the example to examine the diffusion of volume charge density within anisotropic media—a rarely visualised process. The algorithm is internally validated by comparing the response of many thin layers with alternating high and low conductivity values to the theoretically equivalent (yet algorithmically simpler) anisotropic solution, as well as externally validated against an independent algorithm.  相似文献   

10.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

11.
采用偏心状态下柱状成层各向异性(横向各向同性)介质中并矢Green函数的解析表达式高效模拟多分量感应测井仪器在井眼中偏心时的响应.为提高精度,在模拟时考虑到了金属心轴、绝缘保护层的存在以及各分量线圈系的具体形状.数值模拟结果表明,当井眼内钻井液电导率相对较高、地层电导率相对较低时,偏心对仪器响应的影响较大,尤其是对短线圈距线圈系的影响更为明显,必须进行偏心效应校正.当钻井液电导率相对较低时,偏心对线圈系响应的影响可忽略不计.对位于相对低电导率井眼中的线圈系而言仪器方位角的影响可忽略不计,而当线圈系位于相对高电导率井眼中时仪器方位角的影响极为明显.当仪器偏心率较小时线圈系的响应随仪器方位角的变化较小,仪器偏心率越大线圈系的响应随仪器方位角的变化越明显.  相似文献   

12.
Prediction of elastic full wavefields is required for reverse time migration, full waveform inversion, borehole seismology, seismic modelling, etc. We propose a novel algorithm to solve the Navier wave equation, which is based on multi‐block methodology for high‐order finite‐difference schemes on curvilinear grids. In the current implementation, the blocks are subhorizontal layers. Smooth anisotropic heterogeneous media in each layer can have strong discontinuities at the interfaces. A curvilinear adaptive hexahedral grid in blocks is generated by mapping the original 3D physical domain onto a parametric cube with horizontal layers and interfaces. These interfaces correspond to the main curvilinear physical contrast interfaces of a subhorizontally layered formation. The top boundary of the parametric cube handles the land surface with smooth topography. Free‐surface and solid–solid transmission boundary conditions at interfaces are approximated with the second‐order accuracy. Smooth media in the layers are approximated up to sixth‐order spatial schemes. All expected properties of the developed algorithm are demonstrated in numerical tests using corresponding parallel message passing interface code.  相似文献   

13.
Downhole resistivity measurements provide valuable information for geosteering and formation evaluation. It is important to understand and correct the environmental effects, such as the borehole, the tool eccentricity and the resistivity anisotropy effects, of the measurements based on fast and accurate modelling methods. A new pseudo-analytic solution for eccentric coaxial and tilted-coil antennas in the cylindrically multilayered medium with transverse isotropic conductivity was developed. This method can take the eccentric tool, the borehole, the mud invasion and the resistivity anisotropy into account. These formulas enable us to simulate the responses of the downhole induction logging tools, including induction wireline and azimuthal propagation logging-while-drilling measurements. Instead of using the prior fictitious boundary, the generalized reflection coefficients are proposed to construct the linear matrix functions to deal with the tool eccentricity. The cylindrical functions are reorganized and presented in forms of ratios. Thus, the proposed formulas obviate the overflow issue in the computation and are more stable and efficient. The proposed approach is compared and validated with other well-established methods. Simulations and case studies show that: (1) the responses of azimuthal resistivity logging-while-drilling tool are affected by the tool's eccentricity in both isotropic and anisotropic medium; (2) sine curve behaviours exist for the phase difference and amplitude ratio of azimuthal resistivity measurements along with different eccentricity azimuth.  相似文献   

14.
Magnetotelluric (MT) observations at some sites in the vicinity of the Waterberg Fault/Omaruru Lineament (WF/OL), a major tectono-stratigraphic zone boundary in the Central Zone of the Damara Belt, show evidence for strong three-dimensional (3D) effects. We observe very high skew values, phases over 90°, and a strong correlation of parallel components of the electric and magnetic fields at long periods. Because of the dense site spacing and good spatial coverage, we can positively attribute these effects to local geology and are able to resolve structural detail within the WF/OL. Mapping LaTorraca’s electric characteristic vectors in form of ellipses proved particularly useful in identifying key elements of the conductivity structure for subsequent modelling. 3D and 2D anisotropic modelling can reproduce most of the observed 3D effects. The conductivity anomalies revealed in the area are: (i) a conductive ring structure in the shallow crust along the northern part of the profile; (ii) an anisotropic region in the upper crust with high conductivity parallel to the WF/OL; (iii) anisotropy in the lower crust with a different but undetermined strike direction; and (iv) a shallow elongated conductor sub-normal to the WF/OL. Modelling studies further suggest that the (anisotropic) fault zone is approximately 10 km wide and may reach down to a depth of 14 km or more.  相似文献   

15.
三维感应测井受井眼环境影响很大,如何消除这些不利影响是有效获取各向异性地层电导率真值并提高资料处理和解释质量的一项重要工作.本文以一维柱状各向异性地层模型为基础,通过最小平方反演技术从实际测量资料中快速反演井径、偏心距、泥浆电导率、地层水平电导率和各向异性系数等模型参数,设法减小井眼环境对测量结果的影响.首先,利用仪器偏心情况下不同旋转角电导率张量的关系方程,建立旋转角提取与校正方法,获取无旋转角三维感应测井数据.在此基础上,根据事先计算好的井眼校正库并结合多维非线性有限元逼近技术,建立快速计算三维感应测井响应以及Jacobi导数矩阵的插值公式,并利用自适应正则化迭代反演技术不断修改模型参数,实现理论合成资料与输入资料的最佳拟合.最后,通过反演出的模型参数计算三维感应测井资料所有分量的校正量,实现三维感应资料的井眼校正.理论模型和实际资料的处理结果均证实,在低阻井眼泥浆情况下,一维柱状模型中的反演方法仍然可以提取出较可靠的地层水平和垂直电导率,且井眼环境校正对于受井眼环境影响相对较小的测井曲线具有非常好的校正效果.  相似文献   

16.
Recent studies have revealed the great potential of acoustic reflection logging in detecting near borehole fractures and vugs. The new design of acoustic reflection imaging tool with a closest spacing of 10.6m and a certain degree of phase steering makes it easier to extract the reflection signals from the borehole mode waves. For field applications of the tool, we had developed the corresponding processing software: Acoustic Reflection Imaging. In this paper, we have further developed an effective data processing flow by employing multi‐scale slowness‐time‐coherence for reflection wave extraction and incorporating reverse time migration for imaging complicated subtle structures with the strong effects of borehole environment. Applications of the processing flow to synthetic data of acoustic reflection logging in a fractured formation model and interface model with fluid filled borehole generated by 2D finite difference method, and to the physical modelling data from a laboratory water tank, as well as to the field data from two wells in a western Chinese oil field, demonstrate the validity and capability of our multi‐scale slowness‐time‐coherence and reverse time migration algorithms.  相似文献   

17.
A magnetotelluric finite-element modelling algorithm is developed, which is capable of handling three-dimensional conductive and magnetic anisotropic anomalies. Different from earlier three-dimensional magnetotelluric anisotropic modelling methods, the algorithm we presented has taken the magnetic anisotropy into consideration. The variational equations are produced by the Galerkin method and the governing equations are solved using a hexahedral vector edge finite-element method. The accuracy of this algorithm is firstly validated by comparing its solutions with the results of finite-difference method for a three-dimensional conductive arbitrary anisotropic model, and then validated by comparing with analytical solutions for a one-dimensional magnetic model. The responses of four kinds of models under different conditions are studied, and some conclusions are obtained. It shows that for materials with a high magnetic permeability, its influence on magnetotelluric responses cannot be ignored in some circumstances. Especially, if the magnetic susceptibility is exceptionally high, it may really distort the apparent resistivities of lower resistive anomalies. These conclusions are also beneficial for magnetotelluric survey.  相似文献   

18.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

19.
传统三维大地电磁各向异性模拟均是基于规则六面体网格,计算精度有限且较难拟合复杂地质条件.本文采用面向目标自适应非结构矢量有限元法,对三维大地电磁各向异性介质进行模拟.首先从电场双旋度方程出发,利用伽辽金方法建立变分方程;然后利用电流密度连续性条件构建适合大地电磁各向异性问题的加权后验误差估计方法,实现面向目标的网格自适应正演;最后通过典型算例分析各向异性对网格自适应和大地电磁响应的影响特征以及各向异性的识别方法.本文算法能够高精度地拟合起伏地表和任意各向异性介质,适用于分析复杂地电条件大地电磁响应特征,为提高大地电磁资料解释水平提供了理论基础.  相似文献   

20.
利用阵列感应测井进行储层渗透率评价   总被引:1,自引:0,他引:1       下载免费PDF全文
钻井过程中储层受到泥浆侵入影响的程度与储层岩性有着密切关系,其中储层渗透率对侵入深度有着较大影响,因此若可以获知泥浆侵入深度,则有望对储层渗透率进行评估.本文首先建立含泥饼增长的泥浆侵入数值模型,然后建立阵列感应测井数值模型,两者的联合正演模拟显示泥浆侵入对地层的影响可以反映在阵列感应测井响应上,利用阻尼最小二乘法对阵列感应测井响应进行反演可以得到侵入深度.对侵入深度和储层渗透率的关系进行分析发现:在渗透率为1~100mD(1mD=0.987×10~(-3)μm~2)数量级的储层中,渗透率的变化可以在侵入深度上得到反映.以储层和井数据进行二维数值模拟发现:利用阵列感应测井响应反演出来的侵入深度曲线反映了渗透率在地层上的变化趋势,采用解释图版的方法可以对储层各层段的渗透率进行粗略估算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号