首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral loads in nonhomogeneous soil. The rocking stiffness coefficient of the pile shaft in homogeneous soil is derived from the analytical solution taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account the rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. There is little difference between lateral, rocking, and couple stiffness coefficients each obtained from both the two‐dimensional and three‐dimensional methods except for the case of Poisson's ratio near 0.5. The comparison of results calculated by the current method for a pile subjected to lateral loads in homogeneous and nonhomogeneous soils has shown good agreement with those obtained from analytical and numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral soil movements in nonhomogeneous soil. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient that is obtained from the analytical solution, taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to lateral soil movements in nonhomogeneous soil is obtainable in the form of the recurrence equation. For the relationship between the lateral pressure and the horizontal displacement, it is assumed that the behavior is linear elastic up to lateral soil yield, and the lateral pressure is constant under the lateral soil yield. The interaction factors between piles subjected to both lateral load and moment are calculated, taking into account the lateral soil movement. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account the Mindlin equation and the equivalent thickness for soil layers in the equivalent elastic method. For lateral movement, lateral pressure, bending moment, and interaction factors, there are small differences between results obtained from the 1‐D and the 3‐D displacement methods except a very flexible pile. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
An analytical approach using a Winkler model is investigated to provide analytical solutions of settlement of a rectangular pile subjected to vertical loads in nonhomogeneous soils. For a vertically loaded pile with a rectangular cross section, the settlement influence factor of a normal pile in nonhomogeneous soils is derived from Mindlin's solution for elastic continuum analysis. For short piles with rectangular and circular cross sections, the modified forms of settlement influence factors of normal piles are produced taking into account the load transfer parameter proposed by Randolph for short circular piles. The modulus of subgrade reaction along a rectangular pile in nonhomogeneous soils is expressed by using the settlement influence factor related to Mindlin's solution to combine the elastic continuum approach with the subgrade‐reaction approach. The relationship between settlement and vertical load for a rectangular pile in nonhomogeneous soils is available in the form of the recurrence equation. The formulation of settlement of soils surrounding a rectangular pile subjected to vertical loads in nonhomogeneous soils is proposed by taking into account Mindlin's solution and both the equivalent thickness and the equivalent elastic modulus for layers in the equivalent elastic method. The difference of settlement between square and circular piles is insignificant, and the settlement of a rectangular pile decreases as the aspect ratio of the rectangular pile cross section increases. The comparison of results calculated by the present method for a rectangular pile in nonhomogeneous soils has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
水平荷载下导管架平台桩基础的非线性有限元分析   总被引:2,自引:0,他引:2  
导管架平台桩基础的控制荷载主要为风荷载、波浪荷载、地震荷载等水平荷载,为研究水平荷载下导管架平台桩基础的承载特性,采用非线性有限元分析方法对水平荷载下桩-土之间的相互作用进行研究,提出了有效模拟桩基水平承载特性的有限元模型,分析了模型桩的刚度、直径、土质参数中水平土压力系数、剪胀角对桩基承载特性的影响及水平荷载下群桩承载特性,并将有限元计算结果与API规范及模型试验结果进行对比。研究结果表明,非线性有限元分析方法分析水平荷载下桩-土相互作用是可行的,计算结果可为导管架平台的桩基设计提供参考。  相似文献   

7.
过超  付佰勇  龚维明 《岩土力学》2016,37(Z1):350-358
为进一步研究沉箱-桩复合基础的水平向承载性能,开展粉质黏土中单桩、沉箱-桩复合基础在水平向荷载和竖向及水平向组合荷载作用下的系列试验,对沉箱-桩复合基础的水平荷载与位移关系、桩身弯矩、位移及土抗力分布规律及群桩效应等进行了研究。结果表明,在水平荷载作用下沉箱对桩顶的约束使桩身弯矩分布较桩顶自由情况要更均匀,并能有效地降低桩身弯矩、位移及土抗力,提高了基础水平承载能力;在同时作用有竖向和水平向组合荷载时,沉箱底摩擦力参与抵抗水平力作用、桩顶竖向力也有利于进一步提高基础水平承载力;试验获得了不同桩数、桩顶约束、荷载作用条件下的沉箱-桩复合基础群桩效应系数,对于桩距为6倍桩径的情况,桩与桩之间的相互影响很小。  相似文献   

8.
双排桩支护组合体系作为一种新型悬臂类支护结构,其整体刚度的提升有利于保持基坑边侧的安全稳定。本文依托于张家口万全区某双排桩基坑支护工程案例,以现有双排桩冠梁刚度系数计算方法为基础,引入冠梁与连梁作用效应系数优化改进考虑连梁和冠梁作用的基坑矩形双排桩支护结构横向支撑刚度的计算方法,并对双梁组合支护体系下不同土性对双排桩前后排桩桩身最大横向位移的影响进行探讨。结果显示:(1)在双排桩结构计算中需考虑冠梁与连梁对双排支护桩的共同横向约束作用,并将冠梁与连梁的刚性连接作为一个整体以提高矩形双排桩双梁横向支撑刚度系数。(2)双梁组合支护体系组合刚度对桩顶位移有较大影响,组合刚度为40~50 MN/m下的位移与观测值较为贴近;冠梁计算长度与引入的冠梁与连梁作用效应系数对双梁组合支护体系组合刚度影响较大,计算长度对组合刚度呈负相关,效应系数对组合刚度呈正相关。(3)双梁组合支护体系下双排桩横向支撑刚度受前后排桩竖向与横向位移差影响,前后排桩桩身最大横向位移受土层内摩擦角、黏聚力和土体水平抗力比例系数影响;改变抗拉强度不会影响双排桩桩体位移。在基坑埋深以下及桩底范围内桩身存在位移拐点,拐点处各不同内摩擦角、不同黏聚力条件下位移相等。  相似文献   

9.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

10.
王雨  陈文化  王锦华 《岩土力学》2016,37(3):819-826
隧道开挖会降低邻近桩基承载力,如何更为合理评价桩基水平附加响应是需要解决的问题。基于Pasternak双参数地基模型和三折线弹塑性荷载传递模型,采用两阶段分析法,并考虑侧向土体作用及地基土层的非均质特性,提出了更符合实际的单桩水平反应简化分析方法。通过与Winkler地基梁法及边界元法的对比分析,验证了方法的合理性。结合对单桩水平反应的多种影响因素进行参数分析,通过各因素相应的修正系数来对基准工况中单桩最大水平反应进行修正,得到计算工况中单桩的最大水平位移和最大弯矩。分析结果表明,桩基水平位移计算时可忽略侧向土体作用,而弯矩计算时应予以考虑;桩基计算工况的最大水平位移 最大弯矩 与平均地层损失比 呈现线性关系,而与隧道半径R、隧道轴线深度H、桩距隧道中心线距离x及桩身柔度系数 均呈现非线性关系。  相似文献   

11.
通过海洋环境条件下大直径管桩的垂直和水平荷载试验,分析了管桩在垂直和水平荷载作用下的受力特点,得到了管桩的垂直极限承载力、侧摩阻力及端承力、轴向反力系数等结果,以及水平荷载作用下桩顶位移和转角关系、弯矩分布、土抗力、水平地基反力系数的比例系数和最大弯矩点等参数。试验结果表明:垂直荷载作用下,极限承载力可达12000kN,在沉桩过程中部分桩有一定程度的闭塞;大直径管桩能够抵抗水平荷载的作用,弹性长桩的受力性质主要受上部土层的影响。根据试验结果计算的水平地基抗力比例系数m值,对本工程及同类地质条件的桩基设计具有参考价值。  相似文献   

12.
Waves and winds can induce lateral loads on piles, which are often multidirectional. The objective of this study is to investigate the response of a single pile subjected to unidirectional and multidirectional lateral loadings using the finite element analysis program ABAQUS. A simplified version of the state-dependent dilatancy model was implemented and embedded into the program to simulate the behavior of the soil around the pile. The results of the analyses indicate that the lateral resistance of the pile along one horizontal direction under multidirectional loading is lower than that under unidirectional loading. The degree of reduction of the resistance increases with the aspect ratio of the displacement path at the pile head. The directions of the force increment vector and the displacement increment vector are generally non-coaxial under multidirectional loading. The soil-pile interaction and soil responses under multidirectional loading are also significantly different than those under unidirectional loading.  相似文献   

13.
This paper presents a rigorous analysis for the static interaction of a cylindrical thin‐walled pile with an inhomogeneous isotropic elastic half‐space under vertical, horizontal, and torsional forces individually applied at the top of pile. The inhomogeneity is specified with the exponential variation of shear modulus along depth of the embedding medium, and the Poisson's ratio is assumed to be constant. By means of a set of Green's functions for pile and soil medium and satisfying the compatibility conditions between the 2 interacting media, the formulation is reduced to coupled Fredholm integral equations. Using the adaptive‐gradient elements, capable of capturing the singular stress transfer at both ends of the pile, a numerical procedure is developed and utilized for evaluating the relevant integral equations and studying the inhomogeneity effect on the soil‐pile interaction responses. The analysis results have been validated for different soil‐pile modulus ratios under axial load and for a Poisson's ratio of 0.3 under lateral load. The procedure does not consider the nonlinear behavior of the soil medium or plastic yielding in the pile section, and the impact of the unreliable results for the case of high Poisson's ratio is not examined.  相似文献   

14.
成层饱和土中考虑横向惯性的单桩纵向振动   总被引:2,自引:0,他引:2  
杨骁  唐洁 《岩土力学》2013,34(6):1560-1566
基于饱和多孔介质理论,研究了成层饱和黏弹性土层中端承桩的纵向振动特性。首先利用Novak薄层法,得到了土层对纵向振动桩的动力阻抗。其次,将桩等效为Rayleigh-Love杆,给出了成层饱和黏弹性土中端承桩纵向振动的一般分析方法和桩头动力复刚度的解析表达式。具体分析了两层饱和黏弹性土中端承桩的纵向振动特性,得到了桩头动刚度因子和等效阻尼随频率的响应特征,讨论了物理和几何等参数对动刚度因子和等效阻尼的影响。结果表明:桩长径比、土层模量比以及桩土模量比等对桩头动刚度因子和等效阻尼有显著的影响。相比于均质土层中的桩,上层土越硬或下层为软弱土层,桩的动刚度因子和等效阻尼振动幅值增大,其周期随长径比显著变化,且对于大直径桩,动刚度因子和等效阻尼随频率呈振动变化。同时,土体与孔隙水相互作用系数和桩泊松比等的影响相对较小。其结果可作为桩基动力基础设计和动力检测等基础数据。  相似文献   

15.
Seismic response of pile foundations in liquefiable soil: parametric study   总被引:2,自引:1,他引:1  
The performance of pile foundations in liquefiable soil subjected to earthquake loading is a very complex process. The strength and stiffness of the soil decrease due to the increase in pore pressure. The pile can be seriously destroyed by the soil liquefaction during strong earthquakes. This paper presents the response of vertical piles in liquefiable soil under seismic loads. A finite difference model, known as fast Lagrangian analysis of continua, is used to study the pile behavior considering a nonlinear constitutive model for soil liquefaction and pile?Csoil interaction. The maximum lateral displacement and maximum pile bending moment are obtained for different pile diameters, earthquake predominant frequencies, Arias intensities, and peak accelerations. It is found that the maximum lateral displacement and the maximum pile bending moment increase when the predominant earthquake frequency value decreases for a given peak acceleration value.  相似文献   

16.
轴向和横向荷载作用下单桩的受力变形分析是桩基研究的重点内容之一。单桩在水平荷载作用下会产生一定的水平位移与弯矩,而此时作用轴向荷载会使得桩体出现一定的压曲与附加弯矩,以致轴横向荷载作用下的单桩受力变形与单独作用水平荷载或轴向荷载的单桩存在较大的区别。故本文基于能量法,首先分别建立轴横向荷载作用下单桩的受力变形能量方程以及桩周土体能量方程,然后考虑桩土变形协调与一定的桩土相互作用,基于最小势能原理得到单桩变形控制微分方程,并采用幂级数法进行求解,最终得到轴横向荷载作用下单桩受力变形分析的幂级数解答。通过编程计算,将本文方法计算结果与试验结果、数值分析结果、规范法计算结果进行对比分析,验证了本文方法的合理性和可行性。在此基础上,基于本文解答进行了影响参数分析,结果表明:桩体长径比、桩土弹性模量比、桩周土模量深度变化系数均对轴横向受荷单桩的桩身水平位移与最大弯矩值有一定的影响,其中桩周土模量深度变化系数以不小于0.6为宜。  相似文献   

17.
基于自制的冻土-桩动力相互作用模型试验系统,对-5℃、-3℃及上层融化多年冻土中模型桩基进行了水平向动力试验,主要研究了冻结及上层融化冻土中模型桩基的桩头位移-荷载关系、桩基水平动刚度变化及桩身弯矩分布情况。结果表明:冻土中桩基动力响应特性与土体温度密切相关;正冻土中桩基有较大的侧向刚度,当冻土与桩接触面出现较大间隙时,桩头位移-荷载曲线呈反S形;桩基动力性能随多年冻土温度降低将有所改善;当冻土上部出现融化层时,桩基动响应变化显著,桩头动刚度明显减小,桩基在较小动载下可发生较大侧向位移,同时桩身最大弯矩值较正冻土中偏大,且此弯矩点埋深较大。对于多年冻土区桩基工程,应特别重视夏季上层冻土融化时可能出现的震害。  相似文献   

18.
秦世伟  莫泷  史蕙质 《岩土力学》2013,34(4):987-995
将地震液化场地土层分为非液化表层土、中部的液化土层和底部的基层,基于饱和多孔介质理论和Novak薄层法,研究轴向压力作用下液化黏弹性土层中端承桩的水平动力特性。利用Helmholtz分解和变量分离法,得到液化土层对桩水平振动的阻抗。利用矩阵传递法,在频率域得到轴力作用下液化土层中端承桩简谐振动的解析解和桩头复刚度的表达式,并进行参数研究,分析轴力、桩-土模量比、桩长径比、液-固耦合系数等对桩头动力刚度和阻尼的影响。结果表明,在轴力作用下,不同长径比、桩-土模量比、液-固耦合系数时的动力刚度绝对值均比无轴力作用时减小,但随频率的变化趋势相同;轴力对桩水平振动的动力阻抗影响显著,随着轴力的增加,桩的水平振动动力刚度因子的绝对值减小,若轴力继续增大,其绝对值趋近于0,桩发生失稳破坏;桩长径比和桩土模量比对桩的水平振动动力阻抗有显著的影响,而液-固耦合系数的影响较小。  相似文献   

19.

This paper describes the main features related to lateral displacements with depth after successive lateral loading–unloading cycles applied to the top of reinforced-concrete flexible bored piles embedded in naturally bonded residual soil. The bored piles under study have a cylindrical shape, with 0.40-m in diameter and 8.0-m in length. Both bored piles types (P1 and P2) include an embedded steel pipe section in their center as longitudinal steel reinforcements: pile type P1 has another 16 steel rods as steel reinforcement to concrete while pile type P2 has no further steel reinforcement. Pile type P1 has three times as much stiffness (EI) and four and a half times the plastic moment (My) than pile type P2. A similar load–displacement performance was observed at initial loads as for small displacements of both piles. At this initial loading stage, the response of the reinforced concrete piles is a function of the soil characteristics and of a linear elastic pile deformation. During this stage, piles can even be understood as probes for evaluating soil reactions. For larger horizontal displacements, after the concrete section starts undergoing large deformations, approaching the ultimate bending moment, pile behavior and consequently the load–displacement relation starts to diverge for both piles. For pile P1 the values of relevant lateral displacements are extended to about 2.5-m in depth, while for pile P2 lateral displacements are mostly constrained to about 2.0-m in depth. Measurements of horizontal displacements of pile P1 against depth recorded with a slope indicator show that, after unloading, lateral loads at distinct stages (small and near failure loads), exhibits a much higher elastic phase of the system response. An analytical fitting model of soil reaction is proposed based on the measured displacements from slope indicator. The integration of a continuous model proposed for the soil reaction agrees fairly well with the measured displacements up to moments close to plastic limit. Results of load–displacement show that the stiffer pile (P1) was able to mobilize twice as much lateral load compared to pile P2 for a service limit displacement of about 20 mm. The paper shows results that enable the isolation of the structural variable through real scale pile load tests, thus granting understanding of its importance and enabling its quantitative visualization in examples of piles embedded in residual soil sites.

  相似文献   

20.
An efficient analytical approach using the finite element (FE) method, is proposed to calculate the bending moment and deflection response of a single pile under the combined influence of lateral and axial compressive loading during an earthquake, in both saturated and dry homogenous soil, and in a typical layered soil. Applying a pseudo-static method, seismic loads are calculated using the maximum horizontal acceleration (MHA) obtained from a seismic ground response analysis and a lateral load coefficient (a) for both liquefying and non-liquefying soils. It is observed that for a pile having l/d ratio 40 and embedded in dry dense sand, the normalized moment and displacement increase when the input motion becomes more severe, as expected. Further increasing of a from 0.1 to 0.3 leads to increase in the normalized moment and displacement from 0.033 to 0.042, and 0.009 to 0.035, respectively. The validity of the proposed FE based solution for estimating seismic response of pile is also assessed through dynamic centrifuge test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号