首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterogeneities, such as fractures and cracks, are ubiquitous in porous rocks. Mesoscopic heterogeneities, that is, heterogeneities on length scales much larger than typical pore size but much smaller than the wavelength, are increasingly believed to be responsible for significant wave energy loss in the seismic frequency band. When a compressional wave stresses a material containing mesoscopic heterogeneities, the more compliant parts of the material (e.g., fractures and cracks) respond with a greater fluid pressure than the stiffer portions (e.g., matrix pores). The induced fluid flow, resulting from the pressure gradients developed on such scale, is called mesoscopic flow. In the present study, the double‐porosity dual‐permeability model is adopted to incorporate mesoscopic heterogeneities into rock models to account for the attenuation of wave energy. Based on the model, the damping effect due to mesoscopic flow in a one‐dimensional porous structure is investigated. Analytical solutions for several boundary‐value problems are obtained in the frequency domain. The dynamic responses of infinite and finite porous layer are examined. Numerical calculations show that the damping effect of mesoscopic flow is significant on the pore pressure response and the resulting effective stress. For the displacement, the effect is seen only at the very low frequency range or near the resonance frequencies. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, mesoscale hydromechanical simulations are performed to study (1) fracture features and (2) crack‐gas permeability coupling evolution in the context of the tensile splitting test. The mesostructure is based on a 2‐phase 3‐D representation of heterogeneous materials, such as concrete, where stiff aggregates are embedded into a mortar matrix. To take into account these heterogeneities without any mesh adaptation, a weak discontinuity is introduced into the strain field. In addition, a strong discontinuity is also added to take into account microcracking. This mechanical model is cast into the framework of the enhanced finite element method. Concerning the coupling with gas permeability, a double‐porosity method is used to simulate the flow through the cracks and the porosity. The apparent gas permeability is afterwards evaluated by a homogenization method. On the basis of finite element simulations, influence of aggregate size on ultimate crack opening, macroscopic ultimate tensile stress, total dissipated energy, and gas permeability evolution is numerically investigated. Furthermore, gas permeability evolution is also compared with experimental results from the literature. In addition, in the spirit of a sequential multiscale approach, macroscale gas permeability equations are identified from the hydromechanical results coming from the mesoscale computations. These equations lead to a relation between macroscale gas permeability evolution and crack opening. Besides, we show how the aggregate size influences the percolation threshold and that after this threshold, a cubic relation between macroscale gas permeability and crack opening is obtained.  相似文献   

3.
Air sparging (AS) is an in situ soil/groundwater remediation technology, which involves the injection of pressurized air/oxygen through an air sparging well below the zone of contamination. Characterizing the mechanisms governing movement of air through saturated porous media is critical for the design of an effective cleanup treatment system. In this research, micromechanical investigation was performed to understand the physics of air migration and subsequent spatial distribution of air at pore scale during air sparging. The void space in the porous medium was first characterized by pore network consisting of connected pore bodies and bonds. The biconical abscissa asymmetric concentric bond was used to describe the connection between two adjacent pore bodies. Then a rule‐based dynamic two‐phase flow model was developed and applied to the pore network model. A forward integration of time was performed using the Euler scheme. For each time step, the effective viscosity of the fluid was calculated based on fractions of two phases in each bond, and capillary pressures across the menisci was considered to compute the pressure field. The developed dynamic model was used to study the rate‐dependent drainage during air sparging. The effect of the capillary number and geometrical properties of the network on the dynamic flow properties of two‐phase flow including residual saturation, spatial distribution of air and water, dynamic phase transitions, and relative permeability‐capillary pressure curves were systematically investigated. Results showed that all the above information for describing the air water two‐phase flow are not intrinsic properties of the porous medium but are affected by the two‐phase flow dynamics and spatial distribution of each phase, providing new insight to air sparging. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
砂岩三轴循环加卸载条件下的渗透率研究   总被引:6,自引:0,他引:6  
渗透率是地下工程的流-固耦合分析中的一个关键因素。对多孔红砂岩进行了三轴压缩试验,在不同变形阶段实施了轴向应力循环加卸载,并在试验全过程中测量轴向渗透率,得到了试样破坏全过程的渗透率演化规律。从平均应力和循环加卸载对渗透率的影响等两方面进行了深入分析,结果表明,(1)随着轴向变形的增加,初始压密阶段和弹性变形试样渗透率均匀减小;进入塑性变形阶段,渗透率与轴向变形的曲线逐渐趋于水平,低围压条件下渗透率略有增加。(2)轴向加载使骨架颗粒被压缩,引起孔隙减小,造成渗透率减小;采用经验公式定量描述了渗透率和平均应力之间的关系。(3)轴向应力循环加卸载过程中,骨架颗粒的不可恢复变形引起渗透率产生不可恢复现象。(4)峰值后渗透率只发生少许突跳,说明对于多孔砂岩,孔隙和裂隙对渗透率的影响相当,且渗透率的突跳程度随着围压的升高而降低。  相似文献   

5.
Deformation mechanisms at the pore scale are responsible for producing large strains in porous rocks. They include cataclastic flow, dislocation creep, dynamic recrystallization, diffusive mass transfer, and grain boundary sliding, among others. In this paper, we focus on two dominant pore‐scale mechanisms resulting from purely mechanical, isothermal loading: crystal plasticity and crofracturing. We examine the contributions of each mechanism to the overall behavior at a scale larger than the grains but smaller than the specimen, which is commonly referred to as the mesoscale. Crystal plasticity is assumed to occur as dislocations along the many crystallographic slip planes, whereas microfracturing entails slip and frictional sliding on microcracks. It is observed that under combined shear and tensile loading, microfracturing generates a softer response compared with crystal plasticity alone, which is attributed to slip weakening where the shear stress drops to a residual level determined by the frictional strength. For compressive loading, however, microfracturing produces a stiffer response than crystal plasticity because of the presence of frictional resistance on the slip surface. Behaviors under tensile, compressive, and shear loading invariably show that porosity plays a critical role in the initiation of the deformation mechanisms. Both crystal plasticity and microfracturing are observed to initiate at the peripheries of the pores, consistent with results of experimental studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
高围压条件下孔隙介质渗透特性试验研究   总被引:2,自引:0,他引:2  
为研究不同围压条件下孔隙介质的渗透性能,利用新研制的高压渗流仪,对大尺寸低渗透性软弱岩进行了系统的试验测试。试验渗透压差波动幅度仅为0.02MPa,渗出端溶液体积变化量测试精度可达0.03mL。通过溶液体积变化与时间的线性关系,稳定渗流量大小可以精确测定。以稳定压差、流量法(即稳压法),试验验证了岩石的渗透系数随着围压的增加而下降,当围压降低时,岩石渗透系数回升,但回升路径低于原始路径。根据轴向应变的变化情况,提出了室内试验应力-渗流耦合过程中渗透性的变化主要是侧向压力使孔隙、喉道产生压缩变形所致。  相似文献   

7.
In our study, a coupled hydrologic-mechanical analysis is done of the excavation damaged zone, before the emplacement of nuclear waste. This is followed by a coupled thermal-hydrologic-mechanical analysis to evaluate the impact of nuclear waste repository in porous water containing rock mass. This analysis has been under taken in accordance with the Indian reference disposal system. The paper considers the changes in pore pressure and stresses due to excavation of disposal holes. A critical study of rock mass permeability, porosity, thermally induced stresses, strains, and temperature distribution after the emplacement of nuclear spent fuels in disposal holes has also been done. Coupling to the mechanical constitutive equations is done via ??effective?? normal strain rates.  相似文献   

8.
A program for the simulation of two‐dimensional (2‐D) fluid flow at the microstructural level of a saturated anisotropic granular medium is presented. The program provides a numerical solution to the complete set of Navier–Stokes equations without a priori assumptions on the viscous or convection components. This is especially suited for the simulation of the flow of fluids with different density and viscosity values and for a wide range of granular material porosity. The analytical solution for fluid flow in a simple microstructure of porous medium is used to verify the computer program. Subsequently, the flow field is computed within microscopic images of granular material that differ in porosity, particle size and particle shape. The computed flow fields are shown to follow certain paths depending on air void size and connectivity. The permeability tensor coefficients are derived from the flow fields, and their values are shown to compare well with laboratory experimental data on glass beads, Ottawa sand and silica sands. The directional distribution of permeability is expressed in a functional form and its anisotropy is quantified. Permeability anisotropy is found to be more pronounced in the silica sand medium that consists of elongated particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
基于CT试验的岩石细观孔隙模型重构与并行模拟   总被引:1,自引:0,他引:1  
郎颖娴  梁正召  段东  曹志林 《岩土力学》2019,40(3):1204-1212
  相似文献   

10.
金爱兵  王树亮  魏余栋  孙浩  韦立昌 《岩土力学》2020,41(11):3531-3539
岩石工程可能会经受高温环境。岩石高温后冷却方式的不同往往会导致岩石物理力学性质产生重大变化,这对岩石工程的稳定性、渗透性等都会产生重要影响。采用核磁共振(MRI)、电镜扫描(SEM)和单轴压缩试验对100、300、500、600、800 ℃ 5种不同温度砂岩经两种不同冷却方式(自然冷却和水中冷却)后的孔隙率、孔径分布、峰值强度、峰值应变、应力-应变关系以及微观结构变化等进行研究。试验结果表明:自然冷却时,高温砂岩强度并非随温度升高而持续降低,而水冷却会导致砂岩强度持续降低,且降低幅度远超自然冷却;500 ℃可以看作不同冷却方式对砂岩孔隙率影响的临界值,超过500 ℃,水冷却方式会导致孔隙率急剧增长,大孔径(Ф 10 μm)孔隙所占比例也高于自然冷却,因此,高温砂岩工程采用水冷却方式(如隧道着火后用水灭火)要充分考虑由此可能带来渗透危害;SEM测试表明,当温度 500 ℃时,水冷却对裂纹的增宽和扩展产生促进作用;当温度达到800 ℃时,水冷却砂岩孔洞变大,裂隙更加发育,并贯通连成网络,这会导致透水性大幅提高,同时,这也是该温度水冷却导致强度急剧降低的原因之一。  相似文献   

11.
张我华  薛新华 《岩土力学》2009,30(5):1357-1361
孔隙的存在是岩土类介质材料结构的本质特征,它不但改变了岩土体的力学特性,而且严重影响着岩土体的渗透特性。大多数经典的渗流理论中,多孔介质模型都假定孔隙率和渗透系数是与时间无关的材料常数。实际上由于淘涮、侵蚀、冲刷等原因,它们是随时间和坐标变化的,同时又与孔隙中的压力、流速等因素有关。基于孔隙率和损伤变量之间的定量关系,从连续损伤力学的角度对多孔介质岩土材料的渗流力学特性进行了研究。首先,对传统的达西定律形式进行修正,提出了孔隙介质完备有效的达西定律(模型);然后,对该模型中渗透参数的特性进行了讨论和分析,得出了一些有益的结论。  相似文献   

12.
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.  相似文献   

13.
任丘油田雾迷山组白云岩储集层的渗透性试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
韩宝平 《地质科学》2000,35(4):396-403
运用815.02型电液伺服岩石力学试验系统对任丘油田雾迷山组18块白云岩岩芯的渗透性进行了测试.结果表明,溶蚀孔洞型中-亮晶藻屑白云岩和角砾岩,初始和峰值渗透率均较高(分别为143.10×10-7-206.00×10-7Darcy和386.80×10-7-790.00×10-7Darcy),而且破坏强度较低(35.8MPa-55.3MPa);裂隙型白云岩初始渗透率为1.48×10-7-23.40×10-7Darcy,峰值渗透率32.13×10-7-202.10×10-7Darcy;泥质白云岩和硅质白云岩,岩性致密,初始渗透率几乎为零,峰值渗透率66.00×10-7-152.20×10-7Darcy,而且其破坏强度最高可达107.50MPa.同时运用Amray 1000B型电子扫描显微镜和9310型微孔结构分析仪研究了空隙发育对渗透性的影响.  相似文献   

14.
Lv  Yaru  Li  Xin  Fan  Chengfei  Su  Yuchen 《Acta Geotechnica》2021,16(10):3209-3228

Calcareous sand is a typical problematic marine sediment because of its angular and porous particles. The effects of internal pores on the mechanical properties of calcareous sand particles have rarely been investigated. In this paper, the apparent morphology and internal structure of calcareous sand particles are determined by scanning electron microscopy and computed tomography tests, finding that the superficial pores connect inside and outside of the particles, forming a well-developed network of cavities and an internal porosity of up to 40%. The effects of particle morphology and internal porosity on the mechanical responses of particle were investigated by conducting photo-related compression test and 3D numerical simulations. Two failure modes are observed for the porous calcareous sand, i.e., compressive failure indicates that the particle skeleton is continually compressed and fragmented into small detritus without obvious splitting, and tensile failure indicates that the particles are broken into several fragments when the axial force clearly peaks. Calcareous sand particles with a high internal porosity or with small and dense pores often exhibit compressive failure, and vice versa. The particle strength is considerably reduced by increasing the internal porosity, but affected by pore size in nonlinear correlation. The crushing stress–strain points can be well fitted by an exponential curve, which is supplied for discussion.

  相似文献   

15.
多孔介质模型的重构问题是土体细观渗流机理研究的基础和关键。由四参数随机生长法(QSGS)构建土体模型,采用格子玻尔兹曼方法(LBM),通过MATLAB自编程序研究重构土在不同条件下的细观渗流机理。结果表明:随模型尺寸增大,孔隙连通程度显著提高,300×300格点大小的模型连通孔隙率增长幅度(34.38%)最大,继续扩大模型尺寸发现增加不明显;流体粒子在孔隙连通性好、孔径大的区域,会形成主渗流通道,且存在指进效应,孔道中间流速最大,可达0.0324,越靠近孔壁流速越小;大孔隙率土的流速比小孔隙率土大,而低孔隙率土中的流速相比大孔隙土更稳定;LBM模拟渗透率与经典K-C公式计算结果对比发现,孔隙率越高计算渗透率越准确(n=0.78,误差为10.22%);土颗粒越小,渗流孔道越细窄、分布越密集,对应的速度场分布更为均匀,同时流速也更小。该研究成果能较好地揭示重构土的细观渗流机理,也可为现有细观土体孔隙流研究提供一定借鉴。  相似文献   

16.
High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
刘哲  单玄龙  衣健  代登亮 《世界地质》2017,36(3):880-888
火山岩气藏是松辽盆地长岭断陷深层重要的气藏类型。通过钻井岩芯、扫描电镜、孔渗测试及面孔率分析等资料,详细研究了火山岩储层的类型和特征;并结合地震资料和产能数据刻画了火山岩储层和气藏的空间分布特征,探索了不同类型火山岩储层对天然气成藏的控制作用。研究表明,研究区主要发育有气孔流纹岩储层、流纹质凝灰熔岩储层和块状流纹岩储层3种类型。气孔流纹岩储层以原生孔隙和微裂缝为主,属于较高-高孔,低渗-较高渗储层;流纹质凝灰熔岩储层主要发育脱玻化孔和构造裂缝,为中孔-特低渗储层;块状流纹岩储层储集空间以裂缝为主,属于特低孔-特低渗储层。气孔流纹岩型气藏的特点是多层工业气层纵向和横向叠加形成,气井产能高,含气面积大;流纹质凝灰熔岩型气藏的特点是块状气藏的气井产能中等;块状流纹岩型气藏的特点是块状气藏,气井产能小,需压裂后方能达到工业产能。  相似文献   

18.
弱胶结孔隙介质渗透注浆模型试验研究   总被引:2,自引:0,他引:2  
为了研究弱胶结孔隙介质化学注浆浆液充填及减渗的基本规律,采取模型试验的方法,研究了不同有效粒径及细度模数的模型材料注浆前、后渗透系数、孔隙率及抗压强度变化规律,试验过程中控制了注浆泵流量、浆液性能、静水压力等参数,共完成6个模型。试验结果表明:各模型材料注浆充填率在9%~41%之间,随着模型材料粒度及渗透系数的减小,注浆充填率呈逐渐增大的趋势;注浆前、后模型材料的渗透系数随着有效粒径及细度模数的减小而逐渐减小,且减小的比例逐渐增加;注浆大幅地减小了材料的渗透性,各模型渗透系数减小幅度在84%~97%之间;注浆前各模型材料的抗压强度较低且较为接近,注浆后各模型材料的强度增加量在6~10倍之间,且强度增量表现为随着模型有效粒径及细粒模数的减小而逐渐增大的特点。  相似文献   

19.
建立了4组不同孔隙分布形式的多孔材料模型,在考虑孔隙分布范围和密度的基础上计算其孔隙分布分形维数,并利用假三维数值试验的方法获得了相同初始强度、不同孔隙度和孔隙分布形式试样的抗压强度。数值试验结果表明,除了孔隙度较小和孔隙分布分维数较大的试样破坏形式基本满足45° 破裂角的规律以外,该分维数较小的试样均呈现出不对称的斜截面破坏;在孔隙度相同的情况下,该分维数越大,样品的抗压强度越高;通过推导假三维情况下材料孔隙度与抗压强度的理论关系发现,该分维数越大,样组的抗压强度随孔隙度增大而衰减的速率越慢;根据损伤力学模型对试样的抗压强度进行预测分析发现,当样组的该分维数较大时,该模型能够较准确地预测多孔材料的抗压强度,而当样组的该分维数逐渐减小时,损伤力学模型的精度也逐渐降低。上述规律是由孔隙分布分维数越小、孔隙分布越不均匀、试样中应力集中的累积效应越显著的原因而造成的。  相似文献   

20.
The influence of pore structure, water transport properties and rock strength on salt weathering is evaluated by means of a thorough rock characterisation and a statistical analysis. The pore structure was described in terms of its porosity, pore size distribution (quantified by mean pore radius) and specific surface area, density and water transport was characterised by means of water permeability (saturated flow) and capillary imbibition (unsaturated flow); whilst the rock strength test was carried out using uniaxial compressive strength, compressional and shear wave velocities, dynamic elastic constants and waveform energy and attenuation were obtained from the digital analysis of the transmitted signal. A principal component analysis and a stepwise multiple regression model was carried out in order to examine the direct relationships between salt weathering and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical meaning. The first component is mostly linked to mechanical properties, porosity and density whereas the second component is associated with the water transport and pore structure. Salt weathering, quantified by the percentage of weight loss after salt crystallisation, was included in both principal components, showing its dependence on their petrophysical properties. The stepwise multiple regression analysis found that rock strength has a predominant statistical weight in the prediction of salt weathering, with a minor contribution of water transport and pore structure parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号