首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Regional airborne magnetic profiles from India and U.S.A. are analyzed. Profiles are i) 130 km offshore Manglore to 60 km offshore Madras (India) along 13th parallel; ii) Washington to San Francisco (U.S.A.): iii) Brownsville (Texas) to Guatemala City (Mexico). Depth to the sources of magnetic anomalies along Manglore-Madras profile and Washington-San Francisco profiles is calculated either by elementary approximation ofSmellie or Prism model method ofVacquier et al. It is significant that depth values for some of the anomalies obtained by these methods are in very good agreement with those based on drilling data. The magnetic pictures along these profiles are compared with Bouguer gravity anomaly maps and it is shown that in almost all cases where magnetic bodies lie below 5 km (approximately) from sea level they are not reflected in gravity maps whereas all the magnetic bodies which are above 5 km (approximately) produce a markable feature in Bouguer gravity anomaly. This indicates that density of material below this level is almost equal to that of normal basic rocks (2.80 gm/cm3) and those above 5 km have a density less than this. Based on these results the top most layer in crust is considered to be metasedimentary including intrusive rocks and below this it is tentatively taken as Quartz-diorite accounting for the quartz rich Archean formations. Curves representing the variation of compressional wave velocity in i) granite; ii) quartz-diorite; iii) gabbro and iv) dunite, with pressure and temperature as reported from measurements in laboratory, are studied in the light of the general variation of P-wave velocity in the earth's crust reported from seismic sounding studies. It is found that a change in composition from metasedimentary zone to quartz diorite at about 5 km below sea level is supported by this study. It is found that further increase in compressional wave velocity in earth's crust can be explained by a compositional change from quartz diorite to gabbro. At certain places an unusual high velocity for compressional wave at the base of the crust is reported. This can be explained by considering that gabbro merges to Dunite in those areas. Based on this crustal model a probable explanation for the origin of granite masses is attempted.  相似文献   

2.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

3.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

4.
基于EGM2008重力场模型计算获得了渭河盆地及邻区布格重力异常。采用小波多尺度分解方法对布格重力异常进行了4阶小波逼近和小波细节分解,同时基于平均径向对数功率谱方法定量化地计算出1~4阶小波细节和小波逼近所对应的场源平均埋深。结合区域地质和地震资料,对获得的重力场结果进行分析,得到如下结论:①鄂尔多斯地块、渭河盆地、秦岭造山带3个一级构造单元的布格重力异常之间存在明显差异;构造区内部重力异常也存在横向的显著差异。布格重力异常的走向、规模、分布特征与二级构造区及主要的断裂具有一定的对应关系。②渭河盆地及邻区布格重力异常1~4阶细节对应4~23 km不同深度的场源信息,鄂尔多斯地块南缘东、西部的地壳结构存在明显的差异;渭河盆地凹陷、凸起构造区边界清晰,断裂边界与重力异常边界具有较好的一致性;秦岭造山带重力异常连贯性不好,东、西部重力异常变化特征表现出明显的差异。③渭河盆地及邻区布格重力异常分布与莫霍面埋深具有非常明显的镜像关系。渭河盆地及邻区地震主要分布在六盘山—陇县—宝鸡断裂带、渭河断裂与渭南塬前断裂交汇处、韩城断裂与双泉—临猗断裂交汇处。渭河盆地及邻区重力异常主要由中上地壳剩余密度体所影响,这可能是该区地震以浅源地震为主的主要原因。  相似文献   

5.
The Moho depth, crustal thickness and fault systems of the East Vietnam Sea (EVS) are determined by 3D interpretation of satellite gravity. The Moho depth is calculated by 3D Parker inversion from residual gravity anomaly that is obtained by removing the gravity effects of seafloor and Pre-Cenozoic sediment basement topographies from the free air anomaly. The 3D inversion solution is constrained by power density spectrum of gravity anomaly and seismic data. The calculated Moho depths in the EVS vary from 30–31 km near the coast to 9 km in the Central Basin. A map of the lithosphere extension factor in the Cenozoic is constructed from Moho and Pre-Cenozoic sediment basement depths. The fault systems constructed by the maximum horizontal gradient approach include NE-SW, NW-SE, and N-S oriented faults. Based on the interpretation results, the EVS is sub-divided into five structural zones which demonstrated the different characteristics of the crustal structure.  相似文献   

6.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

7.
The Bouguer anomaly map of the Kalabsha and Seiyal areas was analysed on the basis of the available data about the depth to the basement from three boreholes. The density contrast between the basement complex and the Nubia formation was estimated from the gravity values and basement depths. Applying the estimated value of the density contrast, a residual map representing the basement effect and a basement relief map were constructed. The basement depth in Kalabsha and Seiyal areas range from 150 to 500 m below mean sea level. Comparing the general characteristics of the Bouguer anomaly of the Kalabsha and Seiyal areas with the clusters of earthquakes in the area since 1982 till present reveals a gravity low coinciding with a deep focal area. The gravity values increase toward a shallow focal area.  相似文献   

8.
A comprehensive reinterpretation of the available gravity, magnetic, geothermal, geological and borehole information has been made of the Laguna Salada Basin to establish a 3D model of the basement and sedimentary infill. According to statistical spectral analysis, the residual gravity anomaly is due to sources with a mean regional depth of 2.8 km. The topography of the basement was obtained from a three‐dimensional inversion carried out in the wavenumber domain using an iterative scheme. The maximum density contrast of ?300 kg/m3 estimated from previous studies and the mean depth of 2.5 km finally constrained this inversion. The resulting model indicated that the sedimentary infill is up to 4.2 km thick at its deepest point. According to the gravity‐derived basement topography, the basin presents an asymmetry (i.e. it is of the half‐graben type). It is deeper to the east, where it is delimited from the Sierra Cucapah by a step fault. By contrast, the limit with the Sierra de Juarez is a gently sloping fault (i.e. a listric fault). The basement is not even, but it comprises a series of structural highs and lows. N–S to NW–SE and E–W to NE–SW faults delimit these structural units. The magnetic modelling was constrained by (i) the gravity‐derived basement topography; (ii) a Curie isotherm assumed to be between 7 km and 10 km; (iii) assuming induced magnetization only; (iv) the available geological and borehole information. The magnetic anomalies were interpreted successfully using the gravity‐derived basement/sedimentary interface as the top of the magnetic bodies (i.e. the magnetic modelling supports the gravity basement topography). An elongated N–S to NW–SE trending highly magnetized body running from south to north along the basin is observed to the west of the basin. This magnetic anomaly has no gravity signature. Such a feature can be interpreted as an intrusive body emplaced along a fault running through the Laguna Salada Basin. Treatment of the gravity and magnetic information (and of their horizontal gradients) with satellite image processing techniques highlighted lineaments on the basement gravity topography correlating with mapped faults. Based on all this information, we derived detailed geological models along four selected profiles to simulate numerically the heat and fluid flow in the basin. We used a finite‐difference scheme to solve the coupled Darcy and Fourier differential equations. According to our results, we have fluid flow in the sedimentary layers and a redistribution of heat flow from the basin axis toward its rims (Sierra de Juárez and Sierra Cucapah). Our model temperatures agree within an error of 4% with the observed temperature profiles measured at boreholes. Our heat‐flow determinations agree within an error of ±15% with extrapolated observations. The numerical and chemical analyses support the hypothesis of fluid circulation between the clay–lutite layer and the fractured granitic basement. Thermal modelling shows low heat‐flow values along the Laguna Salada Basin. Deep fluid circulation patterns were observed that redistribute such flow at depth. Two patterns were distinguished. One displays the heat flow increasing from the basin axis towards its borders (temperature increase of 20°C). The second pattern shows an increasing heat flow from south to north of the basin. Such behaviour is confirmed by the temperature measurements in the thermometric boreholes.  相似文献   

9.
As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources.The residual gravity anomalies are derived by applying the concept of predicting gravity anomalies from topography. This can be accomplished by employing reductions similar to those used in some isostatic investigations, in which a regional topographic surface is used as the Bouguer reduction datum. The datum is derived by comparison of various harmonics of Bouguer anomalies and elevations of stations. Topography can be used to predict Bouguer anomalies because of isostatic compensation; the resultant anomalies can be considered high frequency residual anomalies or isostatic anomalies corrected for regional compensation. Such maps have been produced for Arizona, New Mexico, west Texas, and Chihuahua, Mexico.The main objective of the MT project is to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau and the adjacent Basin and Range Province and Rio Grande Rift. The MT survey consists of 200 sites along several long profiles with site spacing of 15–20 km. Pre-existing available MT data are being integrated with the new data. After the data are processed, a one-dimensional inversion is applied to the sounding curve and used as a starting point for 2-D modeling. Such a project and ultimate map will be of major value in studying the regional geophysics and tectonics of the southwest United States as they now apply to HDR resources in particular and geothermal resources in general.Electrical conductivity anomalies of large areal extent are of particular interest in geothermal exploration. Correlation analysis of large conductive anomalies with other geophysical, geological, and geotectonic data is being performed. Preliminary analysis of the data has suggested several major regions of anomalously shallow high electrical conductivity. Among these is the Aquarius area of northwest Arizona which is the site of a longwavelength residual anomaly low, which when modeled and correlated with other geophysical data can be shown to be possibly related to low density and high temperature in the crust at depths of 20 km or less. Preliminary analysis of MT data indicates the possible existence of a mid-crustal high electrical conductivity anomaly in this same region.  相似文献   

10.
IntroductionGeologistsfirstlyfoundcoesite-bearingecologitesattheendof1980'sandthenthemicrodiamond(Xu,elal,1992)inDabieshanarea.Theultra-highpressure(UHP)metamorphismandthegeodynamicprocessesofDabieorogenhaveattractedmanygeoscientists(Wang,etal,1989,O...  相似文献   

11.
The spectral study of the Bouguer anomally map of Central India suggests an uplifted crust-mantle interface under the Mahandi graben. This study has delineated three subsurface levels of anomalous masses at the respective depths of 23 km, 8 km, and 2 km apparently representing the Moho, an intermediate discontinuity in the sialic part of the crust and the basement, respectively. Model study of the Bouguer anomaly along a profile suggests a typical continental graben type subsurface structure with a low density depression in the sialic part of the crust between 8 and 18 km supported by an elevated upper mantle of intermediate density (3.4 g/cm3) varying in depth from 25 km to 55 km. The depths of the inferred interfaces in case of Bundelkhand granite are 32 km, 11 km, and 1.5 km, which might represent the Moho, the base of intruded granite massif, and some shallow compositional variation. Similar studies in case of Vindhyan basin have brought out three discontinuities at the respective depths of 16 km, 6–4.5 km, and 2.4 km. The first horizon at the depth of 16 km probably represents the interface between the granitic and the basaltic part of the crust. The 6–4.5 km is the depth of the basement, with the 2.4 km interface separating Bijawar rocks from Vindhyans wherever they are present. A generalized inversion of a profile across a positive belt of Bouguer anomaly representing the subsurface Bijawar rocks support the above result.  相似文献   

12.
A detailed gravity survey was carried out on the island of Vulcano, Aeolian Islands, Italy. Gravity was measured on 107 stations and the Bouguer anomalies were computed by assuming geological densities. Aim of this survey was to complete the island structural pattern relatively to the shallower structures. Separation of the gravity anomaly field was carried out by means of data filtering, and two main components were discerned. The λ>2.2 km wavelength component, filtered out of the longer wavelength components, was interpreted quantitatively along a NW profile. The best fitting model consists of an upper layer of recent pyroclastic products (p=2.1 g/cm3) lying upon a highly compacted pyroclastic series or lavas (p=2.4 g/cm3). The shorter wavelength residual gravity field (λ<2.2 km) is characterized by two anomalies, located on Vulcanello and the «Fossa di Vulcano» crater. Vulcanello anomaly could be interpreted, given the geothermal state of the area, as due to an increase of the rock density consequent to propylization processes by high temperature fluids (T>200°C). «Fossa di Vulcano» anomaly is instead attributable to the local volcanic chimney. A schematic comprehensive model of Vulcano is also presented, which accounts for the available main geological and geophysical data.  相似文献   

13.
Based on terrestrial gravity data, in this paper we prepared a map of Bouguer anomalies, which was filtered to separate shallow and deep gravity sources. Based on a density model and gravimetric inversion techniques, the discontinuous crust-mantle boundary and the top of crystalline basement were modeled. Subsequently, the equivalent elastic thickness (Te) was evaluated, considering information from the crust-mantle discontinuity and topographic load, finding high Te values in the eastern Andean foothills and west of the Velasco range. These results are consistent with the positive isostatic and residual Bouguer anomaly values, which suggest the presence of high-density rocks in the mid-to upper crust. In addition, petrographic and geochemical analysis conducted in surface outcrops suggest a mantle origin.  相似文献   

14.
重震反演中国东北地壳上地幔三维密度结构   总被引:5,自引:3,他引:2       下载免费PDF全文
本文利用重力和地震P波到时数据反演得到了中国东北地区地壳上地幔三维密度结构.与单一的重力或地震反演相比,重震反演一方面有效地克服了重力反演结果垂向分辨率低的问题,另一方面也提高了地震反演结果的可靠性.结果显示:中国东北地区的地壳及上地幔剩余密度异常分布与构造单元具有明显的相关性,造山带对应低密度异常,盆地对应高密度异常;区域内火山下方有明显的低密度体存在,可能是由于太平洋板块俯冲进入上地幔并部分滞留,在滞留板块深部脱水和软流圈热物质共同作用下产生了上涌岩浆,喷发后形成了火山.  相似文献   

15.
Summary Recently determined gravity anomalies along the NW-SE oriented Swiss Geotraverse from Basel to Bellinzona are used in combination with seismic refraction data to deduce a crustal section across the Swiss Alps. Topographic, Bouguer, free air, isostatic and geological corrections were applied to the data. Geological features considered in the corrections are the Swiss Molasse basin filled with sediments and the Ivrea body of high-density material. The resultant Bouguer anomaly over the Gotthard massif is 130 mgal lower than the Bouguer anomaly at the northern end of the profile near Basel. The Alpine region is associated with negative isostatic anomalies down to –20 mgal. The crustal thickness is found to increase gradually from the northern end of the profile (thicknessH=30 km) towards the Helvetic nappes at the northern margin of the Alps (H=38 km) and more rapidly towards the Gotthard massif (H=50 km) and further south to Biasca down to a depth of 58 km. From Biasca southward the crustal thickness thins quite rapidly to reach a depth of 30 km at the southern end of the profile near Bellinzona. Thus the Alps have a distinct asymmetric crustal root whose maximum thickness is almost twice the average crustal thickness in Central Europe. With the Mohorovii-discontinuity deduced from seismic observations an average constant density contrast of –0.33 gcm–3 is found between the lower crust and upper mantle underneath the Alps.Institut für Geophysik, ETH Zürich, Contribution No. 130.  相似文献   

16.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

17.
The Central Indian region has a complex geology covering the Godavari Graben, the Bastar Craton (including the Chhattisgarh Basin), the Eastern Ghat Mobile Belt, the Mahanadi Graben and some part of the Deccan Trap, the northern Singhbhum Orogen and the eastern Dharwar Craton. The region is well covered by reconnaissance‐scale aeromagnetic data, analysed for the estimation of basement and shallow anomalous magnetic sources depth using scaling spectral method. The shallow magnetic anomalies are found to vary from 1 to 3 km, whereas magnetic basement depth values are found to vary from 2 to 7 km. The shallowest basement depth of 2 km corresponds to the Kanker granites, a part of the Bastar Craton, whereas the deepest basement depth of 7 km is for the Godavari Basin and the southeastern part of the Eastern Ghat Mobile Belt near the Parvatipuram Bobbili fault. The estimated basement depth values correlate well with the values found from earlier geophysical studies. The earlier geophysical studies are limited to few tectonic units, whereas our estimation provides detailed magnetic basement mapping in the region. The magnetic basement and shallow depth values in the region indicate complex tectonic, heterogeneity, and intrusive bodies at different depths, which can be attributed to different thermo‐tectonic processes since Precambrian.  相似文献   

18.
南海位于太平洋板块、印澳板块和欧亚板块交汇处,自晚中生代以来历经张裂作用、海底扩张以及印藏碰撞、菲律宾海板块西向运动等构造事件的叠加改造,不仅形成了复杂多样的构造格局,而且堆积了厚薄不均的沉积层.为了考察沉积层密度改正对利用重力资料分析南海不同尺度构造特征的影响,本文利用南海各区域不同深度沉积层的地震波速度及钻孔密度等数据,建立了沉积层与沉积基底密度差随深度变化的二次函数关系式,并基于该关系式,计算了南海沉积层相对基底密度低而产生的重力异常值.结果显示,南海沉积层的重力异常值在海盆区介于-40~-60 mGal,而在堆积巨厚沉积物的莺歌海盆地可达到-135 mGal;相对于空间重力异常、布格重力异常,经沉积层重力异常改正后的地壳布格重力异常更能突出深部不同尺度的密度结构和莫霍面的起伏特征,其总水平导数模更突显了南海西北部红河断裂带的海上延伸;利用谱分析技术估算岩石圈强度时,经沉积层重力异常改正的地壳布格重力异常数据获得的岩石圈有效弹性厚度值更为符合地质实际,特别是在长条形的巨厚沉积区如莺歌海盆地和马来盆地.分析表明,重力异常的沉积层密度改正对揭示南海构造特征具有重要的意义.  相似文献   

19.
Bathymetric and gravity surveys were carried out from 1988 to 1994, in the Gulf of Naples (Southern Italy) to offshore extend the already existing Bouguer anomaly map. In order to improve the knowledge of the structural setting beneath the active Neapolitan volcanoes (Vesuvio, Campi Flegrei and Ischia), 862 stations were surveyed within the isobath of 400 m; at the same time, and about 2000 on-land gravity values were also collected. A new Bouguer anomaly map spanning the whole volcanic region was drawn from the final data set. Gravity anomalies were referred to the new absolute gravity station in Naples and computed according to 1980 Geodetic Reference System. Finally, a density value of 2200 kg/m3 was used in the computation of the Bouguer and terrain effects. We carried out the inversion of the gravity anomalies adopting a 2.5-D modelling along selected profiles crossing the investigated area. The interpretative models were constrained to data obtained from deep wells and other geophysical investigations.  相似文献   

20.
A statistical technique, based on the concept of a 1D energy density spectrum of the observed gravity field, has been used to compute ensemble average depths to various horizons containing causative sources of random geometric shape, size, density, etc. The plot of the logarithm of the energy of the observed Bouguer anomaly versus the angular frequency can be approximated, over a certain frequency band, by a linear segment whose slope is related to an average ensemble depth around which a random distribution of numerous anomalous sources exists. Suitable matched filters, based on the computed values of intercepts and slopes of several linear segments approximating the spectrum, have been used to deconvolve the gravity effects associated with the causative sources, occurring around their respective mean depths. The individual deconvolved gravity effects thus separated out have been modelled using the sin x/x method by assuming a fluctuating interface between two formations. The applicability of the present method has been assessed using two observed Bouguer anomaly profiles: one from Ujjain to Mahan, and the other from Jhansi to Mandla where Deep Seismic Sounding (DSS) results are available. The proposed geological crustal models along these two profiles exhibit reasonably good agreement with those obtained from DSS results. A geologically plausible model of the crust in a virgin region has been presented along a Bouguer anomaly profile from Jaipur to Raipur. The following main conclusions have been drawn from the present analysis: (1) The depths to the Moho and Archaean basement interfaces fluctuate between 33.2 and 36.8 km and between 4.6 and 7.0 km respectively. (2) The Narmada-Son Lineament (NSL) does not coincide exactly with the Moho upwarp beneath it. However, this offset is greater in the eastern part of the NSL rather than in the western part. (3) The development of the Satpura horst structure is due to a rise in the Moho interface in a compressional regime. (4) The intrabasement feature (depth from 5 to 12 km) represents a hybrid massif possibly formed due to an admixture of sialic and simatic crust under a tensional regime in the Ujjain-Mahan section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号