首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   

2.
We develop a new time‐domain reverse‐time migration method called double plane‐wave reverse‐time migration that uses plane‐wave transformed gathers. Original shot gathers with appropriate data acquisition geometry are double slant stacked into the double plane‐wave domain with minimal slant stacking artefacts. The range of plane‐wave components needed for migration can be determined by estimating the maximum time dips present in shot gathers. This reduces the total number of input traces for migration and increases migration efficiency. Unlike the pre‐stack shot‐profile reverse‐time migration where the number of forward propagations is proportional to the number of shots, the number of forward propagations needed for the proposed method remains constant and is relatively small even for large seismic datasets. Therefore, the proposed method can improve the efficiency of the migration and be suitable for migrating large datasets. Double plane‐wave reverse‐time migration can be performed for selected plane‐wave components to obtain subsurface interfaces with different dips, which makes the migration method target oriented. This feature also makes the method a useful tool for migration velocity analysis. For example, we are able to promptly obtain trial images with nearly horizontal interfaces and adjust velocity models according to common image gathers. Seismic signal coming from steeply dipping interfaces can be included into the migration to build images with more detailed structures and higher spatial resolution as better velocity models become available. Illumination compensation imaging conditions for the proposed method are also introduced to obtain images with balanced amplitudes.  相似文献   

3.
Extended common‐image‐point gathers (CIP) constructed by wide‐azimuth TI wave‐equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space‐ and time‐lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space‐lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray‐based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles.  相似文献   

4.
Least‐squares reverse time migration provides better imaging result than conventional reverse time migration by reducing the migration artefacts, improving the resolution of the image and balancing the amplitudes of the reflectors. However, it is computationally intensive. To reduce its computational cost, we propose an efficient amplitude encoding least‐squares reverse time migration scheme in the time domain. Although the encoding scheme is effective in increasing the computational efficiency, it also introduces the well‐known crosstalk noise in the gradient that degrades the quality of the imaging result. We analyse the cause of the crosstalk noise using an encoding correlation matrix and then develop two numerical schemes to suppress the crosstalk noise during the inversion process. We test the proposed method with synthetic and field data. Numerical examples show that the proposed scheme can provide better imaging result than reverse time migration, and it also generates images comparable with those from common shot least‐squares reverse time migration but with less computational cost.  相似文献   

5.
Wave‐equation based shot‐record migration provides accurate images but is computationally expensive because every shot must be migrated separately. Shot‐encoding migration, such as random shot‐encoding or plane‐wave migration, aims to reduce the computational cost of the imaging process by combining the original data into synthesized common‐source gathers. Random shot‐encoding migration and plane‐wave migration have different and complementary features: the first recovers the full spatial bandwidth of the image but introduces strong artefacts, which are due to the interference between the different shot wavefields; the second provides an image with limited spatial detail but is free of crosstalk noise. We design a hybrid scheme that combines linear and random shot‐encoding in order to limit the drawbacks and merge the advantages of these two techniques. We advocate mixed shot‐encoding migration through dithering of plane waves. This approach reduces the crosstalk noise relative to random shot‐encoding migration and increases the spatial bandwidth relative to conventional plane‐wave migration when the take‐off angle is limited to reduce the duration of the plane‐wave gather. In turn, this decreases the migration cost. Migration with dithered plane waves operates as a hybrid encoding scheme in‐between the end members represented by plane‐wave migration and random shot‐encoding. Migration with dithered plane waves has several advantages: every synthesized common‐source gather images in a larger aperture, the crosstalk noise is limited and higher spatial resolution is achievable compared to shot‐record migration, random shot‐encoding and linear shot‐encoding, respectively. Computational cost is also reduced relative to both random and linear shot‐encoding migration since fewer synthesized common‐source gathers are necessary to obtain a high signal‐to‐noise ratio and high spatial resolution in the final image.  相似文献   

6.
Wavefield‐based migration velocity analysis using the semblance principle requires computation of images in an extended space in which we can evaluate the imaging consistency as a function of overlapping experiments. Usual industry practice is to assemble those seismic images in common‐image gathers that represent reflectivity as a function of depth and extensions, e.g., reflection angles. We introduce extended common‐image point (CIP) gathers constructed only as a function of the space‐ and time‐lag extensions at sparse and irregularly distributed points in the image. Semblance analysis using CIP's constructed by this procedure is advantageous because we do not need to compute gathers at regular surface locations and we do not need to compute extensions at all depth levels. The CIP's also give us the flexibility to distribute them in the image at irregular locations aligned with the geologic structure. Furthermore, the CIP's remove the depth bias of common‐image gathers constructed as a function of the depth axis. An interpretation of the CIP's using the scattering theory shows that they are scattered wavefields associated with sources and receivers inside the subsurface. Thus, when the surface wavefields are correctly reconstructed, the extended CIP's are characterized by focused energy at the origin of the space‐ and time‐lag axes. Otherwise, the energy defocuses from the origin of the lag axes proportionally with the cumulative velocity error in the overburden. This information can be used for wavefield‐based tomographic updates of the velocity model, and if the velocity used for imaging is correct, the coordinate‐independent CIP's can be a decomposed as a function of the angles of incidence.  相似文献   

7.
Prestack image volumes may be decomposed into specular and non‐specular parts by filters defined in the dip‐angle domain. For space‐shift extended image volumes, the dip‐angle decomposition is derived via local Radon transform in depth and midpoint coordinates, followed by an averaging over space‐shifts. We propose to employ prestack space‐shift extended reverse‐time migration and dip‐angle decomposition for imaging small‐scale structural elements, considered as seismic diffractors, in models with arbitrary complexity. A suitable design of a specularity filter in the dip‐angle domain rejects the dominant reflectors and enhances diffractors and other non‐specular image content. The filter exploits a clear discrimination in dip between specular reflections and diffractions. The former are stationary at the specular dip, whereas the latter are non‐stationary without a preferred dip direction. While the filtered image volume features other than the diffractor images (for example, noise and truncation artefacts are also present), synthetic and field data examples suggest that diffractors tend to dominate and are readily recognisable. Averaging over space‐shifts in the filter construction makes the reflectors? rejection robust against migration velocity errors. Another consequence of the space‐shift extension and its angle‐domain transforms is the possibility of exploring the image in a multiple set of common‐image gathers. The filtered diffractions may be analysed simultaneously in space‐shift, scattering‐angle, and dip‐angle image gathers by means of a single migration job. The deliverables of our method obviously enrich the processed material on the interpreter's desk. We expect them to further supplement our understanding of the Earth's interior.  相似文献   

8.
Reverse‐time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common‐image‐point gathers, carry rich information to characterize the angle‐dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common‐image‐point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common‐image‐point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V‐shaped residual moveout with the slope of the “V” flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth‐order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.  相似文献   

9.
We propose a method for imaging small‐scale diffraction objects in complex environments in which Kirchhoff‐based approaches may fail. The proposed method is based on a separation between the specular reflection and diffraction components of the total wavefield in the migrated surface angle domain. Reverse‐time migration was utilized to produce the common image gathers. This approach provides stable and robust results in cases of complex velocity models. The separation is based on the fact that, in surface angle common image gathers, reflection events are focused at positions that correspond to the apparent dip angle of the reflectors, whereas diffracted events are distributed over a wide range of angles. The high‐resolution radon‐based procedure is used to efficiently separate the reflection and diffraction wavefields. In this study, we consider poststack diffraction imaging. The advantages of working in the poststack domain are its numerical efficiency and the reduced computational time. The numerical results show that the proposed method is able to image diffraction objects in complex environments. The application of the method to a real seismic dataset illustrates the capability of the approach to extract diffractions.  相似文献   

10.
Interval velocity analysis using post‐stack data has always been a desire, mainly for 3D data sets. In this study we present a method that uses the unique characteristics of migrated diffractions to enable interval velocity analysis from three‐dimensional zero‐offset time data. The idea is to perform a standard three‐dimensional prestack depth migration on stack cubes and generate three‐dimensional common image gathers that show great sensitivity to velocity errors. An efficient ‘top‐down’ scheme for updating the velocity is used to build the model. The effectiveness of the method is related to the incorporation of wave equation based post‐stack datuming in the model building process. The proposed method relies on the ability to identify diffractions along redatumed zero‐offset data and to analyse their flatness in the migrated local angle domain. The method can be considered as an additional tool for a complete, prestack depth migration based interval velocity analysis.  相似文献   

11.
This paper describes least‐squares reverse‐time migration. The method provides the exact adjoint operator pair for solving the linear inverse problem, thereby enhancing the convergence of gradient‐based iterative linear inversion methods. In this formulation, modified source wavelets are used to correct the source signature imprint in the predicted data. Moreover, a roughness constraint is applied to stabilise the inversion and reduce high‐wavenumber artefacts. It is also shown that least‐squares migration implicitly applies a deconvolution imaging condition. Three numerical experiments illustrate that this method is able to produce seismic reflectivity images with higher resolution, more accurate amplitudes, and fewer artefacts than conventional reverse‐time migration. The methodology is currently feasible in 2‐D and can naturally be extended to 3‐D when computational resources become more powerful.  相似文献   

12.
Survey sinking migration downward continues the entire surface observed multi‐shot data to the subsurface step by step recursively. Reflected energy from reflectors at current depth appear at zero time and zero offset in the extrapolated wavefield. The data (seismic records) of t > 0 at this depth are equivalent to the data acquired by a survey system deployed at this depth. This is the reason to name the process ‘survey sinking’. The records of negative time need not to be further propagated since they carry no information to image structures beneath the new survey system. In this paper, we combine survey sinking with dreamlet migration. The dreamlet migration method decomposes the seismic wavefield and one‐way wave propagator by complete time‐space localized bases. The localization on time gives flexibility on time‐varying operations during depth extrapolation. In dreamlet survey sinking migration, it only keeps the data for imaging the structures beneath the sunk survey system and gets rid of the data already used to image structures above it. The deeper the depth is, the shorter is the valid time records of the remaining data and less computation is needed for one depth step continuation. For data decomposition, in addition to time axis, dreamlet survey sinking also decomposes the data for source and receiver gathers, which is a fully localized decomposition of prestack seismic data. A three‐scatter model is first used to demonstrate the computational feature and principle of this method. Tests on the two‐dimensional SEG/EAGE salt model show that with reduced data sets the proposed method can still obtain good imaging quality on complex geology structures and a strong velocity contrast environment.  相似文献   

13.
We reformulate the equation of reverse‐time migration so that it can be interpreted as summing data along a series of hyperbola‐like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction‐stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola‐like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction‐stack migration. This formulation leads to filters that can be applied to the generalized diffraction‐stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction‐stack migration images have fewer artefacts than those computed by the standard reverse‐time migration algorithm. The main drawback is that generalized diffraction‐stack migration is much more memory intensive and I/O limited than the standard reverse‐time migration method.  相似文献   

14.
Wave‐equation migration velocity analysis is a technique designed to extract and update velocity information from migrated images. The velocity model is updated through the process of optimizing the coherence of images migrated with the known background velocity model. The capacity for handling multi‐pathing of the technique makes it appropriate in complex subsurface regions characterized by strong velocity variation. Wave‐equation migration velocity analysis operates by establishing a linear relation between a slowness perturbation and a corresponding image perturbation. The linear relationship and the corresponding linearized operator are derived from conventional extrapolation operators and the linearized operator inherits the main properties of frequency‐domain wavefield extrapolation. A key step in the implementation is to design an appropriate procedure for constructing an image perturbation relative to a reference image that represents the difference between the current image and a true, or more correct image of the subsurface geology. The target of the inversion is to minimize such an image perturbation by optimizing the velocity model. Using time‐shift common‐image gathers, one can characterize the imperfections of migrated images by defining the focusing error as the shift of the focus of reflections along the time‐shift axis. The focusing error is then transformed into an image perturbation by focusing analysis under the linear approximation. As the focusing error is caused by the incorrect velocity model, the resulting image perturbation can be considered as a mapping of the velocity model error in the image space. Such an approach for constructing the image perturbation is computationally efficient and simple to implement. The technique also provides a new alternative for using focusing information in wavefield‐based velocity model building. Synthetic examples demonstrate the successful application of our method to a layered model and a subsalt velocity update problem.  相似文献   

15.
We present the chain of time‐reverse modeling, image space wavefield decomposition and several imaging conditions as a migration‐like algorithm called time‐reverse imaging. The algorithm locates subsurface sources in passive seismic data and diffractors in active data. We use elastic propagators to capitalize on the full waveforms available in multicomponent data, although an acoustic example is presented as well. For the elastic case, we perform wavefield decomposition in the image domain with spatial derivatives to calculate P and S potentials. To locate sources, the time axis is collapsed by extracting the zero‐lag of auto and cross‐correlations to return images in physical space. The impulse response of the algorithm is very dependent on acquisition geometry and needs to be evaluated with point sources before processing field data. Band‐limited data processed with these techniques image the radiation pattern of the source rather than just the location. We present several imaging conditions but we imagine others could be designed to investigate specific hypotheses concerning the nature of the source mechanism. We illustrate the flexible technique with synthetic 2D passive data examples and surface acquisition geometry specifically designed to investigate tremor type signals that are not easily identified or interpreted in the time domain.  相似文献   

16.
Waveform inversion is a velocity‐model‐building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image‐domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the information carrier. The objective function for the image‐domain approach is designed to optimize the coherency of reflections in extended common‐image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies arising from the velocity model error. Minimizing the objective function optimizes the model and improves the image quality. The gradient of the objective function is computed using the adjoint state method in a way similar to that in the analogous data‐domain implementation. We propose an image‐domain velocity‐model building method using extended common‐image‐point space‐ and time‐lag gathers constructed sparsely at reflections in the image. The gathers are effective in reconstructing the velocity model in complex geologic environments and can be used as an economical replacement for conventional common‐image gathers in wave‐equation tomography. A test on the Marmousi model illustrates successful updating of the velocity model using common‐image‐point gathers and resulting improved image quality.  相似文献   

17.
Migration velocity analysis with the constant‐density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In the correct model, it should collapse to a point. The usual approach to obtain a focused image involves a cost functional that penalizes energy in the extended image at non‐zero shift. Its minimization by a gradient‐based method should then produce the correct velocity model. Here, asymptotic analysis and numerical examples show that this method may be too sensitive to amplitude peaks at large shifts at the wrong depth and to artefacts. A more robust alternative is proposed that can be interpreted as a generalization of stack power and maximizes the energy at zero‐subsurface shift. A real‐data example is included.  相似文献   

18.
Reverse‐time migration gives high‐quality, complete images by using full‐wave extrapolations. It is thus not subject to important limitations of other migrations that are based on high‐frequency or one‐way approximations. The cross‐correlation imaging condition in two‐dimensional pre‐stack reverse‐time migration of common‐source data explicitly sums the product of the (forward‐propagating) source and (backward‐propagating) receiver wavefields over all image times. The primary contribution at any image point travels a minimum‐time path that has only one (specular) reflection, and it usually corresponds to a local maximum amplitude. All other contributions at the same image point are various types of multipaths, including prismatic multi‐arrivals, free‐surface and internal multiples, converted waves, and all crosstalk noise, which are imaged at later times, and potentially create migration artefacts. A solution that facilitates inclusion of correctly imaged, non‐primary arrivals and removal of the related artefacts, is to save the depth versus incident angle slice at each image time (rather than automatically summing them). This results in a three‐parameter (incident angle, depth, and image time) common‐image volume that integrates, into a single unified representation, attributes that were previously computed by separate processes. The volume can be post‐processed by selecting any desired combination of primary and/or multipath data before stacking over image time. Separate images (with or without artifacts) and various projections can then be produced without having to remigrate the data, providing an efficient tool for optimization of migration images. A numerical example for a simple model shows how primary and prismatic multipath contributions merge into a single incident angle versus image time trajectory. A second example, using synthetic data from the Sigsbee2 model, shows that the contributions to subsalt images of primary and multipath (in this case, turning wave) reflections are different. The primary reflections contain most of the information in regions away from the salt, but both primary and multipath data contribute in the subsalt region.  相似文献   

19.
Attenuation compensation in reverse‐time migration has been shown to improve the resolution of the seismic image. In this paper, three essential aspects of implementing attenuation compensation in reverse‐time migration are studied: the physical justification of attenuation compensation, the choice of imaging condition, and the choice of a low‐pass filter. The physical illustration of attenuation compensation supports the mathematical implementation by reversing the sign of the absorption operator and leaving the sign of the dispersion operator unchanged in the decoupled viscoacoustic wave equation. Further theoretical analysis shows that attenuation compensation in reverse‐time migration using the two imaging conditions (cross‐correlation and source‐normalized cross‐correlation) is able to effectively mitigate attenuation effects. In numerical experiments using a simple‐layered model, the source‐normalized cross‐correlation imaging condition may be preferable based on the criteria of amplitude corrections. The amplitude and phase recovery to some degree depend on the choice of a low‐pass filter. In an application to a realistic Marmousi model with added Q, high‐resolution seismic images with correct amplitude and kinematic phase are obtained by compensating for both absorption and dispersion effects. Compensating for absorption only can amplify the image amplitude but with a shifted phase.  相似文献   

20.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号