首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
洞穴地点骨化石铀系年龄可信度的讨论*   总被引:2,自引:1,他引:1  
沈冠军 《第四纪研究》2007,27(4):539-545
骨化石是铀不平衡系测年法广泛应用而又颇有争议的研究对象。文章通过对典型铀加入模式的计算,指出以α能谱的精度,二种铀系年龄差异的显著性表明近期内有较大量铀的迁移,但其在误差范围内的一致不能保证样品构成封闭体系。以往积累的数据表明,大多数洞穴地点骨化石给出了二法一致的铀系年龄,但钙板与下伏骨化石铀系年龄大多差异显著且与地层顺序矛盾,即使被次生碳酸盐岩包裹,多半骨化石的铀系年龄仍显著偏低于其包裹体。此外,相当一部分样品的U-Th同位素比难以用简单的铀后期加入或淋失来解释。基于对次生碳酸盐岩铀系年龄可信度的认识,骨化石总体上不构成封闭体系,所载铀系年代信息只具有限的分辨率。  相似文献   

2.
《Quaternary Science Reviews》2003,22(10-13):1373-1382
U and Th concentration profiles in fossil hominid and faunal teeth have been measured by laser ablation ICPMS. These profiles record diverse modes of U and Th uptake, particularly within enamel, that can be broadly related to the state of sample preservation. Observed U profiles are in general inconsistent with existing diffusion–adsorption models developed for U-uptake in bone and teeth. Where the models appear applicable, calculated diffusion rates are several orders of magnitude smaller than previous estimates. Laser ablation ICPMS offers a means of rapidly characterizing U and Th distributions in the enamel and dentine components of teeth as a precursor to ESR and U-series dating. In particular, it should allow the identification of teeth (and also bone) samples that have simple U-uptake histories and are amenable to precise dating by time-consuming and expensive Th–U and Pa–U TIMS techniques. We also demonstrated the use of laser ablation ICPMS to measure U-series isotopes in dentine and enamel samples with relatively high U concentrations (>20 ppm). These results, obtained using a quadrupole ICPMS, illustrate significant promise for in situ U-series isotope analysis, particularly when combined with the greater sensitivity and multi-collection capabilities of new sector ICPMS instrumentation. The latter may permit precise isotope ratio measurements on samples containing only a few ppm of U.  相似文献   

3.
铀系国际标准样鉴定结果讨论   总被引:2,自引:0,他引:2       下载免费PDF全文
夏明 《地质科学》1984,(1):13-25
铀系国际标准样的鉴定是开展铀系方法的一项基础工作。其主要内容是测定实验流程中所必需使用示踪剂的参数,测试地质样品中各项同位素比值和年龄,检验各国铀系实验室的全部实验程序。  相似文献   

4.
Wet climatic episodes are known to have prevailed in the Egyptian Sahara several times during the late Quaternary, most recently during the Holocene 8000 yr ago. Earlier wet episodes have been recognized as having occurred during the past 300,000 yr and have been dated by U-series methods in speleothems and in lake travertines. We show here that the times of enhanced groundwater movement can also be determined by 230Th/234U dating of secondary U in ores of uranium, iron, and phosphate. We also present evidence that such acceleration of groundwater movements is indicated by relatively low 234U/238U activity ratios in the secondary uranium. Our new data show that pluvial periods in Egypt occurred during marine oxygen isotope stages 4, 5, 6, and 7 and therefore are consistent with the view that the wet episodes are the results of migration of the tropical monsoonal belt driven primarily by the 23,000-yr precession cycle of the Milankovich curve, modulated by the 100,000-yr eccentricity cycle.  相似文献   

5.
Calculations,according to some open-system models,point out that while a statistically significant discrepancy between the results of two U-series methods,^230Th/^234U and ^227Th/^220Th(or ^231Pa/^235U),attests a relatively recent and important uranium migration,concordant dates cannot guarantee closes-system behavior of sample.The results of 20 fossil bones from 10 Chinese sites,19 of which are determined by two U-series methods,are given,Judging from independent age controls,8 out of the 11 concordant age sets are unacceptable,The results in this paper suggest that uranium may cycle into or out of fossil bones,such geochemical events may take place at any time and no known preserving condition may securely protect them from being affected.So for the sitew we have studied,the U-series dating of fossil bones is of limited reliability.  相似文献   

6.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

7.
Activity ratios of 234U/238U, 230Th/234U, and 230Th/232Th have been determined for calcite, gypsum and halite speleothems from caves of the Nullarbor Plain, mostly in the area N and NW of Mundrabilla Station, for the purpose of U-series dating. All calcite speleothems contain adequate amounts of uranium for dating, but some show an excess of 230Th. Stratigraphic relationships indicate that there were at least three phases of calcium carbonate deposition in the Nullarbor caves. The calcite samples, with one possible exception, have ages in excess of ca. 400000 yrs BP. This suggests that no significant amounts of calcium carbonate deposition have taken place during the last 400ka. At present, active deposition of speleothems is restricted almost entirely to gypsum and halite. The only gypsum speleothem dated was found to have a finite age of ca. 185 ka. Six dates on a small halite speleothem containing insect and arachnid remains indicate that it formed rapidly during Holocene time.  相似文献   

8.
《Quaternary Science Reviews》2004,23(7-8):947-958
High-resolution chronologies in continental carbonate deposits such as tufas are required for detailed palaeoclimatic and environmental studies. This work set out to establish if high-resolution U-series dating of detritus-rich Holocene tufas is routinely possible. The study centres on a paludal Holocene tufa from southern England that already has an existing Holocene chronology, based on 14C and supported by biostratigraphy, against which to compare U-series dates. The results show that significant detrital contamination combined with low initial U concentrations, and short time for ingrowth of radiogenic 230Th make high-resolution U-series dating of Holocene tufa very difficult. Moreover, a single (230Th/232Th)initial value to correct for the presence of detrital 230Th is not appropriate at the study site, a finding that may apply to most Holocene tufas. Total sample dissolution of coeval samples demonstrates considerable variability in the isotopic composition of the detritus. The total sample dissolution data are too scattered to constrain chronologies at the required resolution and may indicate the incorporation of a 230Th-rich component in the detritus.  相似文献   

9.
U-series dating of fossil reef corals is a well established and widely applied technique in paleoclimate research. Many fossil corals, however, show evidence for post-depositional diagenetic alteration, and it is generally accepted that the accuracy of U-series coral ages is more limited due to coral diagenesis than analytical precision. In recent years, three models have been published that try to correct the effects of diagenesis and allow the calculation of model ages [Thompson W. G., Spiegelmann M. W., Goldstein S. L., and Speed R. C. (2003) An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters210, 365-381; Villemant B., and Feuillet N. (2003) Dating open systems by the 238U-234U-230Th method: application to Quaternary reef terraces. Earth and Planetary Science Letters210, 105-118; Scholz D., Mangini A., and Felis T. (2004) U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters218, 163-178].Here, we assess the age variability of both conventional 230Th/U-dating and the three models by application to different sub-samples of individual coral specimens. The age variability, estimated as the 2σ-standard deviation on the individual ages, is compared with the errors quoted by the different methods. Our results show that the errors of conventional 230Th/U-dating as well as those of the method of Thompson et al. (2003) do not account for the true age variability. The age variability of both methods is in the range of the errors given by the models of Villemant and Feuillet (2003) and Scholz et al. (2004).Furthermore, we show that the widely used reliability criteria are not sufficient to identify all diagenetically altered corals. In contrast, analysis of different sub-samples of one coral specimen allows (i) to estimate the real age variability, (ii) to test if the assumptions of the models are fulfilled, and (iii) to investigate the diagenetic processes in more detail. Thus, this method should generally be applied to obtain more reliable U-series coral ages and errors.  相似文献   

10.
长白山天池火山晚更新世以来的喷发活动:   总被引:6,自引:0,他引:6  
应用高精度铀系不平衡TIMS法测定了吉林长白山天池火山岩锥体中上部的11个熔岩、浮岩样品的年龄,并据此划分出晚更新世、全新世以来6个喷发活动期次,分别为:>350ka、70ka、18-25ka、10ka、4-5ka和1-0.75ka。此外,还介绍了铀系不平衡法火山岩年代学的基本原理和试验流程,讨论了样品封闭等问题。  相似文献   

11.
《Applied Geochemistry》2002,17(6):781-792
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of ‘bomb’ 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th /234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95±0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10±0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean=0.94±0.07). These data indicate that 234U has been removed from the rock samples in the last ∼350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock. More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable.  相似文献   

12.
The combined U-series/electron spin resonance (ESR) dating method was applied to nine teeth from two Early Pleistocene archaeological sites located in the Orce area (Guadix-Baza Basin, Southern Spain): Fuente Nueva-3 (FN-3) and Barranco León (BL). The combination of biostratigraphy and magnetostratigraphy places both sites between the Olduvai and Jaramillo subchrons (1.78–1.07 Ma).Our results highlight the difficulty of dating such old sites and point out the limits of the combined U-series/ESR dating method based on the US model. We identified several sources of uncertainties that may lead to inaccurate age estimates. Seven samples could not be dated because the dental tissues had (230Th/234U) activity ratios higher than equilibrium, indicating that uranium had probably leached from these tissues. It was however possible to calculate numerical estimates for two of the teeth, both from FN-3. One yielded a Middle Pleistocene age that seems to be strongly underestimated; the other provided an age of 1.19 ± 0.21 Ma, in agreement with data obtained from independent methods. The latter result gives encouragement that there are samples that can be used for routine dating of old sites.  相似文献   

13.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

14.
The large, extensive tufa deposits of the semi‐arid Naukluft Mountains, Namibia are potentially important palaeoenvironmental indicators in an area with few proxy records. Tufas are reliable indicators of increased moisture availability, and have been shown to be amenable to 234U–230Th dating, although two challenges are detrital contamination and open‐system behaviour. Densely cemented tufa facies are good candidates for dating, minimising these problems. We report attempts to date five densely‐cemented units, which are only found rarely within the Naukluft deposits. We applied a detailed methodology using multiple subsample analysis, measurement of insoluble residues, application of ‘isochron’ mixing lines, and attempted open‐systems modelling, alongside observations of micromorphology and cathodoluminescence in order to assess the validity of any obtained dates. Surprisingly, densely cemented tufas were found not always to be suitable for dating. Two units contained detrital contamination, which could not be corrected for using a single leachate correction or ‘isochron’ methods. Two units contained ‘excess 230Th’. This could result under a closed‐system if initial (234U/238U) was sufficiently high. Alternatively this may be the result of open‐system behaviour, and loss of uranium, or incorporation of initial unsupported 230Th, which render samples unsuitable for 234U–230Th dating. Micromorphological appearance and cathodoluminescence behaviour are used to explore these possibilities. This study exemplifies the need for careful sample selection, and highlights the importance of analysing multiple subsamples from any tufa sample. The detailed methodology applied proves to be a powerful tool for identifying the range of problems that can be encountered when selecting suitable candidate samples for successful dating. It also shows that semi‐arid tufa sequences may contain very little material suitable for dating. A reliable age of c 80 ka was obtained for a banded unit within a large fluvial barrage, with less reliable dates suggesting tufa deposition during times since >350 ka through to the late Holocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Globally, rivers supply uranium to the oceans with excess 234U relative to secular equilibrium and 234U taken-up by corals can be used for dating. In addition, the 234U abundance in sea water, at the time the coral was growing, can be measured independently. The veracity of U-series ages used in determining past sea-level variations is dependent on selecting pristine corals free from diagenetic alteration. A quantitative test for alteration assumes invariant 234U abundances in the oceans for at least the past half a million years and results from samples outside of a narrow range in modern ocean 234U abundance are excluded from data sets. Here, we have used previously published data to show that 234U in the oceans appears to be variable and directly related to changes in sea-level, not only over long glacial-interglacial timescales but also at very short, centennial timescales. Most of the previously discarded data can be used to provide valuable additional sea-level information. The process permits a unique insight into the interplay between sources and sinks of uranium in the oceans mediated by sea-level changes at rates far faster than previously thought possible. Similar, rapid sea-level, forcing of other trace element abundances in the oceans is likely.  相似文献   

16.
《Applied Geochemistry》2003,18(8):1251-1266
Within the framework of the ENRESA (Spain) natural analogue programme, the U-ore deposit of “Mina Fe” is being studied as a natural analogue of radioactive spent fuel behaviour. In this context, the knowledge of the role played by fracture minerals as scavengers of certain analogue elements, mainly U, and the establishment of the time scale of the rock-water interaction processes controlling the uptakes or losses of U in the system are two relevant objectives. Fracture-infill materials from the site have first been mineralogically characterised, then the upper part of the U-series determined in both bulk samples and U-rich leachates obtained by sequential leaching. Uranium-series of the bulk samples indicate that most of the fractures remained as closed systems in the last 1.6 Ma, while in other fractures water/rock interaction processes affecting the upper part of the U-series have been identified. These processes indicate recent or rapid U accumulation or losses (<102 ka), old 234U accumulation (> 102 ka) or 234U+230Th recoil gain. The apparently random distribution in depth of fractures where these processes occurred corroborates the different hydraulic behaviour of fractures, as a result of their varying degree of sealing. Uranium concentrations and 234U/238U ARs of the leachates obtained with Morgan's solution and 6N HCl indicate that minerals dissolved with these reagents (U(IV/VI) oxyhydroxides and goethite+clays, respectively) are responsible for the retention of almost all of the U in the bulk samples. Furthermore, the 234U lost by the U minerals dissolved with Morgan's solution seems to be fixed onto goethite–clay mixtures, the intersticial water being the vehicle for the isotopic transfer, which in turn is a recent or recent-past process.  相似文献   

17.
This study investigates U-series, Sr isotopes, major and trace elements in a chalk aquifer system located in Eastern France. Soil and rock samples were collected along depth profiles down to 45 m in four localities as an attempt to investigate the weathering processes in the soil, the unsaturated zone and the saturated zone of the aquifer. Interstitial water was extracted from soils and rocks by a centrifugation technique. U-series offer a powerful tool to calculate weathering rates because the relative mobility of the U- and Th-isotopes can be precisely measured and it does not require the determination of a reference state as in other approaches. As expected, the data show very large mobile element depletion in the soil with large 230Th excess relative to 238U, while the rocks show more limited but not insignificant mobile element depletion. The U-series data have been used to constrain weathering rates based on a 1-D reactive transport model. Weathering rates in the near surface are about 10–100 times faster than at depth. However, when integrated over the depth of the cores, including the unsaturated and the saturated zones, this underground weathering represents more than 30% of the total weathering flux, assuming congruent dissolution of carbonates. The (234U/238U) ratios in interstitial water are consistent with solid samples showing 234U depletion near the surface and an excess 234U at depth. A leaching experiment performed on chalk shows that the excess 234U in natural waters percolating through carbonate rocks results both from preferential 234U leaching and direct recoil in the interstitial water. A new approach was used to derive the recoil ejection factor based on BET measurements and the fractal dimension of chalk surface. Consideration of preferential leaching and recoil allows a more accurate modeling of weathering rates.  相似文献   

18.
19.
U-series disequilibria measured in waters and rocks from a chalk aquifer in France have been used as an analog for long-term radionuclide migration. Drill core samples from a range of depths in the vadose zone and in the saturated zone, as well as groundwater samples were analyzed for 238U, 234U, 232Th and 230Th to determine transport mechanisms at the water/rock interface and to quantify parameters controlling the migration of radionuclides. Isotope measurements in rocks were done by TIMS, whereas (234U/238U) and (230Th/232Th) activity ratios in water samples were measured by multi-collector-ICP-MS. Both depletion and enrichment in 234U relative to 238U were observed in carbonate rock samples resulting from chemical weathering in the unsaturated zone and calcite precipitation in the zone of water-table oscillation, respectively. The correlation between (230Th/232Th) activity ratios and 87Sr/86Sr ratios found in the chalk samples indicates that thorium is mainly contained in a minor silicate phase whose abundance is variable in chalk samples. Water samples are all characterized by (234U/238U) > 1 resulting from α-recoil effect of 234Th. Groundwaters are characterized by a more radiogenic signature in 87Sr/86Sr than the rocks. Moreover, (230Th/232Th) activity ratios in the waters are lower than in the rocks, and increase with distance from the water divide, which suggests that Th transport is controlled by colloids formed during water infiltration in the soil. A 1-D transport model has been developed in order to constrain the U-series nuclide transport considering a transient behavior of radionuclides in the aquifer and a time-dependent composition for the solid phase. This model permits a prediction of the time scale of equilibration of the system, and an estimation of parameters such as weathering rate, distribution coefficients and α-recoil fractions. Retardation factors of 10-35 and from 1 × 104 to 2 × 105 were predicted for U and Th, respectively, and can be used to predict the migration of radionuclides released as contaminants in the environment. At the scale of our watershed (∼32 km2), a characteristic migration time from recharge to riverine discharge of 200-600 yr for U and 0.2-3.7 Myr for Th was obtained.  相似文献   

20.
The 230Th/234U/238U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system 230Th/234U/238U ages is elevated 234U/238Uinitial values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have 234U/238Uinitial values close to seawater, there is a need for age validation. Redundant 230Th/234U/238U and 231Pa/235U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both 230Th/234U/238U and 231Pa/235U ages in fragments as small as 500 mg. We have obtained excellent agreement between 230Th/234U/238U and 231Pa/235U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the 230Th/234U/238U age accuracy.Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230Th/234U/238U and 231Pa/235U dates is generally better than ±0.3% and ±1.5%, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231Pa and from undetermined sources currently limit the 231Pa/235U age uncertainty to about ±2.5%. U isotope data and 230Th/234U/238U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号