首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
As indicated by the profile of overconsolidation ratio (OCR), the stress history of a soil deposit is one of the dominant factors that influence the engineering behavior of soils. A commonly used method to obtain the parameter is the laboratory oedometer test, which is of low accuracy and time consuming because of inevitable sample disturbance. These difficulties can be overcome by in situ pizeocone penetration test, which provides continuous measurement of cone resistance, sleeve friction, and pore water pressure induced during the penetration. Though many methods have been proposed to estimate the preconsolidation pressure and overconsolidation ratio of clay deposits, their validity still needs to be proved. In this study, existing empirical methods for interpreting stress history of clays through piezocone tests are briefly reviewed. It is shown that regional correlations are valid. Piezocone tests utilizing a Vertek-Hogentogler CPTU truck that have been completed at different sites in the Jiangsu province of China. Existing correlations are compared with these field test data. It is shown that the correlation based on normalized net tip resistance is pretty accurate for determining the overconsolidation ratio of Quaternary clay deposits.  相似文献   

2.
This article presents a new approach to estimate hydraulic conductivity of soil from cone penetration test with pore water pressure measurement (referred to as CPTU hereafter). The proposed approach is based on the test result of the spherical cavity expansion of the soil at the tip of a pile. During the piezocone penetration, the flow shape of pore water around the tip of the cone is assumed to be a spherical crown and induced excess pore water is assumed to dissipate from the crown surface. Based on this assumption, a bi-linear relation between the piezocone sounding metric (which is the product of the pore water pressure ratio Bq and the tip resistance Qt) and the hydraulic conductivity index KD is derived to estimate the hydraulic conductivity of the soil layer. The derived approach expands the applicable range of existing approaches in the literature. It is demonstrated that the proposed approach can cover the entire tip angles of the cone and the modified equation can fit the CPTU test data well.  相似文献   

3.
The maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of the maximum shear moduli of reclaimed ground in the Songdo area on the western coast of Korea were evaluated using various field and laboratory tests, including the standard penetration test (SPT), piezocone penetration test (CPTu), self-boring pressure meter test (SBPT), down-hole seismic test (DHT), seismic piezocone penetration test (SCPTu) and resonant column test (RCT). Soils were classified variously by using a conventional unified soil classification system and classification charts for CPTu data. For the soils containing mostly sand and silt, the soil classifications using the classification charts for CPTu data show good agreement with the unified soil classification. Based on the statistical analysis on various maximum shear moduli, new site-specific empirical correlations between the shear moduli and SPT and CPTu values were proposed. Predictions of the maximum shear moduli using the proposed correlations were compared with the data obtained from the DHT, which is comparatively exact in evaluating the maximum stiffness of soils. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of soils in western coastal area of Korea.  相似文献   

4.
This paper proposes a modified-theoretical approach to interpreting the undrained shear strength from piezocone tests in clays. Assuming the shear and normal stresses on the cone face to be the friction at the cone–soil interface and the ultimate expansion pressure, respectively, an expression of the tip resistance is first derived at force equilibrium. The undrained shear strength is then determined by combining the derived expression of tip resistance with the formulation for pore pressure at the cone shoulder position. Many factors, such as the penetration rate and the cone roughness, are considered in this model. Different shaped model penetrometers, including cone- and ball-shaped ones, are adopted in centrifuge tests to investigate the validity of the proposed method. The undrained shear strength estimated from the piezocone test is found to agree well with that from ball penetrometer test. Case studies are also presented to show the application of the proposed method. Comparisons between the predicted and measured values of undrained shear strength indicate that the proposed approach is generally applicable for nonfissured clays, especially intact clays.  相似文献   

5.
The paper discusses a new method to put forward to determine the initial pore pressure by extrapolating the last segment of measured pore pressure versus the inverse square root of time scale through incomplete pore pressure dissipation test. For underconsolidated soil, the estimated initial pore pressure is greater than the hydrostatic pore pressure. With the calculation of the initial pore pressure, the status of the consolidation of underconsolidated soil can be evaluated by calculating the apparent degree of consolidation which is defined as excess pore pressure generated by piezocone penetration divided by the difference between the total pore pressure measured by piezocone and in situ hydrostatic pore pressure. The apparent degree of consolidation is less than one as the soil is underconsolidated. The Northern Expressway Connection project of Chongqi Bridge is introduced as an example of practical application. In this case, the studied area is slightly underconsolidated, which is consistent with the results of the laboratory oedometer tests. Finally, compared with overconsolidation ratio (OCR) values from the oedometer tests, a new formula to estimate the OCR of underconsolidated soil using the apparent degree of consolidation was presented. It indicates that the OCR of underconsolidated soil can be proposed directly from partial piezocone dissipation tests.  相似文献   

6.
Helical piles are structural deep foundation elements, which can be categorized as torque-driven piles without any limitations to implement in marine situations. Different methods are used to predict the axial capacity of helical piles, such as static analysis, but have some limitation for this type of piles on marine conditions. In situ testing methods as supplement of static analysis have been rarely used for helical piles. In geotechnical engineering practice, the most common in situ tests particularly applicable for coastal or offshore site investigation are cone penetration test (CPT) and piezocone penetration test (CPTu). The CPT is simple, repeatable, and prepares the continuous records of soil layers. In this paper, a data bank has been compiled by collecting the results of static pile load tests on thirty-seven helical piles in ten different sites including CPT or CPTu data. Axial capacities of thirty-seven helical piles in different sites were predicted by direct CPT methods and static analysis. Accuracy estimation of ten direct CPT methods to predict the axial capacity of helical piles was investigated in this study. Comparisons have been made among predicted values and measured capacity from the pile load tests. Results indicated that the recently developed methods such as NGI-05 (2005), ICP-05 (2005), and UWA-05 (2005) predicted axial capacity of helical piles more accurately than the other methods such as Meyerhof (1983), Schmertmann (1978), Dutch (1979), LCPC (1982), or Unicone (1997). However, more investigations are required to establish better correlation between CPT data and axial capacity of helical piles.  相似文献   

7.
Based on cone penetration tests with pore pressure measurements (CPTUs) and standard penetration tests (SPTs), the geotechnical properties of five lithostratigraphic units were determined during the construction of Incheon international airport on reclaimed macrotidal flats in Kyonggi Bay, Korea. Two late Pleistocene non-marine units (unit V and unit IV) display largest N values (cf. number of blows required to achieve a standard penetration), reflecting coarse-grained and overconsolidated sediments. Tidal channel and tidal flat facies (unit IIIb) consist of unweathered late Pleistocene tidal sand and mud. The tidal channel facies is characterized by upward-decreasing cone resistance (q t) and sleeve friction (f s) with negative pore pressures (u bt), reflecting a fining-upward textural trend. The tidal flat facies, by contrast, is represented by uniformly low q t and f s values with high friction ratios (FRs), suggesting homogeneous muddy deposits. Two overconsolidated units, a weathered late Pleistocene tidal mud (unit IIIa) and an early Holocene organic-rich non-marine mud (unit II), are characterized by high q t, f s, FRs and N values, unit IIIa being much more consolidated than unit II. Holocene tidal sands and muds (unit I) show the smallest q t and f s values with positive u bt. These are slightly more consolidated than the tidal flat facies of unit IIIb. Two unconformable boundaries (a sequence boundary and a transgressive surface) have also been identified on some CPTU and SPT profiles. The boundaries are indicated by gradual but sharp increases in q t, f s and N values with an abrupt drop of u bt, which indicates the contact between two units showing contrasting rigidity. The regional pattern produced by the unconformable boundaries indicates the presence of late Pleistocene valleys which pass through the middle of study area. The location of the valleys seems to be controlled by the antecedent basement morphology.  相似文献   

8.
Piezocone penetration test(CPTu), the preferred in-situ tool for submarine investigation, is significant for soil classification and soil depth profile prediction, which can be used to predict soil types and states. However, the accuracy of these methods needs to be validated for local conditions. To distinguish and evaluate the properties of the shallow surface sediments in Chengdao area of the Yellow River Delta, seabed CPTu tests were carried out at ten stations in this area. Nine soil classi...  相似文献   

9.
The use of the piezocone penetration test (CPTU) in a geotechnical site investigation offers direct field measurement on stratigraphy and soil behavior. Compared with some traditional investigation methods, such as drilling, sampling and field inspecting method or laboratory test procedures, CPTU can greatly accelerate the field work and hereby reduce corresponding operation cost. The undrained shear strength is a key parameter in estimation of the stability of natural slopes and deformation of embankments in soft clays. This paper provides the measurements of in situ CPTU, field vane testing and laboratory undrained triaxial testing of Lianyungang marine clay in Jiangsu province of China. Based on the literature review of previous interpretation methods, this paper presents a comparison of field vane testing measurements to CPTU interpretation results. The undrained shear strength values from both the field vane tests and cone penetration resistances are lowest at the mid-depths of the marine clay layers, and the excess pore water pressures are highest at the mid-depths of the marine clay layers, indicating that the marine clay layer is underconsolidated.  相似文献   

10.
We present in situ strength and pore-pressure measurements from 57 dynamic cone penetration tests in sediments of Mecklenburg (n?=?51), Eckernförde (n?=?2) and Gelting (n?=?4) bays, western Baltic Sea, characterised by thick mud layers and partially free microbial gas resulting from the degradation of organic material. In Mecklenburg and Eckernförde bays, sediment sampling by nine gravity cores served sedimentological characterisation, analyses of geotechnical properties, and laboratory shear tests. At selected localities, high-resolution echo-sounder profiles were acquired. Our aim was to deploy a dynamic cone penetrometer (CPT) to infer sediment shear strength and cohesion of the sea bottom as a function of fluid saturation. The results show very variable changes in pore pressure and sediment strength during the CPT deployments. The majority of the CPT measurements (n?=?54) show initially negative pore-pressure values during penetration, and a delayed response towards positive pressures thereafter. This so-called type B pore-pressure signal was recorded in all three bays, and is typically found in soft muds with high water contents and undrained shear strengths of 1.6–6.4 kPa. The type B signal is further affected by displacement of sediment and fluid upon penetration of the lance, skin effects during dynamic profiling, enhanced consolidation and strength of individual horizons, the presence of free gas, and a dilatory response of the sediment. In Mecklenburg Bay, the remaining small number of CPT measurements (n?=?3) show a well-defined peak in both pore pressure and cone resistance during penetration, i.e. an initial marked increase which is followed by exponential pore-pressure decay during dissipation. This so-called type A pore-pressure signal is associated with normally consolidated mud, with indurated clay layers showing significantly higher undrained shear strength (up to 19 kPa). In Eckernförde and Gelting bays pore-pressure response type B is exclusively found, while in Mecklenburg Bay types A and B were detected. Despite the striking similarities in incremental density increase and shear strength behaviour with depth, gas occurrence and subtle variations in the coarse-grained fraction cause distinct pore-pressure curves. Gaseous muds interbedded with silty and sandy layers are most common in the three bays, and the potential effect of free gas (i.e. undersaturated pore space) on in situ strength has to be explored further.  相似文献   

11.
浅层沉积物不排水抗剪强度(Su)是深水作业的关键参数之一。为了获取南海神狐海域首次海域天然气水合物试采区W18-19框体的基本工程地质特征,试采工程准备阶段开展了原位孔压静力触探测试(CPTU)及大量的室内实验。本文将主要基于CPTU计算不排水抗剪强度的基本模型,采用微型十字板、电动十字板、袖珍贯入仪及不固结不排水三轴实验,确定该区域不排水抗剪强度的基本模式,并提出适用于南海神狐钙质黏土层的不排水抗剪强度纵向分布规律计算模型,对该区域水合物上覆层的不排水抗剪强度进行预测。 结果表明,基于总锥端阻力、有效锥端阻力、超孔隙压力的模型系数分为13.8、4.2、14.4。综合考虑地层压实效应和含气情况,本文提出的分段函数预测模型与室内结果的一致性较好,可用于工程设计阶段进行工区不排水抗剪强度纵向分布规律的预测。另外,基于有效锥端阻力的不排水抗剪强度经验模型适应于浅层极软-较硬压实的钙质粘土层,基于超孔隙压力的不排水抗剪强度模型适用于较硬-坚硬的不含气层,而基于总锥端阻力的不排水抗剪强度计算模型则适用于坚硬含气的钙质黏土层。本文提出的分段函数模型有效的提高了经验模型在南海神狐水合物赋存区的适用性,计算结果可为工程安全评价提供支撑。  相似文献   

12.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

13.
Abstract

The zero load readings of cone resistance (qc) and sleeve friction (fs) measured by a piezocone (uCPT) shift with the ambient temperature. A method of correcting the effect of temperature on uCPT measurements in seabed sediments has been proposed for the case where there is no temperature sensor in the uCPT probe. This method is based on the assumption that the “actual” profile of fs of soft shallow seabed sediments linearly increases with depth, and a rate of increase of α?=?0.2?kPa/m was obtained using measured ground temperatures and fs values in seabed sediments in Isahaya Bay, Japan. An “actual” fs profile can then be constructed using the measured fs value at the shallow surface and the value of α. Using the differences between the measured and the estimated “actual” fs profiles, the ground temperature profile can be obtained, and then the effect of temperature on the uCPT measurements can be corrected. The proposed method was used for temperature corrections on uCPT measurements in Isahaya Bay, Japan. The values of undrained shear strength (su) from the temperature-corrected uCPT measurements agree well with the laboratory measured values of su using the undisturbed soil samples.  相似文献   

14.
For the past four decades, the CPT has played a key role in onshore and offshore soil investigations. One of the main applications of cone penetration test (CPT) is the soil behavioral classification. Most of the developed methods for soil identification using CPT and CPTu (piezocone) data are well categorized for common soils, such as clays, silts, and sands. Soils with low resistance or more compressibility generally involve problems in geotechnical engineering practice and construction projects. Consequently, these unusual deposits require further evaluation and more detailed data. Five major groups of problematic soils including: liquefiable, sensitive, peaty, collapsible, and expansive soils have been considered in this study. One hundred and forty CPT and CPTu test records were collected from fifteen countries. Sixty-one of the records are related to difficult soils. A brief comparison is performed for currently used soil behavioral classification charts, such as by Campanella et al. (1985 Campanella, R. G., P. K. Robertson, D. Gillespie, and J. Greig. 1985. Recent developments in in-situ testing of soils. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, San Francisco, Vol. 2, 849–54. [Google Scholar]), Robertson (1990 Robertson, P. K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal 27 (1):15158. doi:10.1139/t90–014[Crossref], [Web of Science ®] [Google Scholar]), Jefferies and Davies (1991 Jefferies, M. G., and M. P. Davies. 1991. Soil classification using the cone penetration test: Discussion. Canadian Geotechnical Journal 28 (1):17376. doi:10.1139/t91–023[Crossref], [Web of Science ®] [Google Scholar]) and Eslami and Fellenius (1997 Eslami, A., and B. H. Fellenius. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal 34 (6):886904. doi:10.1139/cgj-34–6-886[Crossref], [Web of Science ®] [Google Scholar]). Analysis based on CPT data indicates that a few commonly used charts recognize relatively well problematic deposits. However, further studies are needed to increase the accuracy and capability of methods. Existing charts have some problems due to the limitations of the nature of rectangular charts based on two axes. A new format of classification chart, i.e., triangular form containing cone tip resistance (qc), sleeve friction (fs), and pore pressure (u2) is proposed for soil identification which can be realized in practice. The proposed chart with more accuracy and less scattering of data than the previous charts is able to identify soil types particularly for deltaic soils.  相似文献   

15.
Abstract

This study established a Couple Eulerian–Lagrange model to simulate monopile vibratory penetration for the investigation of soil plugging effect during high-frequency penetration of monopiles for wind turbine. Simulation analysis is focused particularly on soil plugging effect of a large diameter monopile during vibratory penetration into sand, clay, or layered soil. The results of the numerical simulation show that soil plugging effect is unlikely to occur during monopile penetration into the clay soil, while partial soil plugging may occur during the sand penetration. Penetration resistance at the pile toe is transferred to the radial stress around the pile wall. At a critical point penetration process, internal shaft friction becomes larger than external shaft friction. Moreover, radial pressure factors increase during partial soil plugging effect. For layered soil, the topsoil not only has great influence on the soil plugging effect, but also affects shaft friction in the subsoil during monopile penetration.  相似文献   

16.
Offshore wind power is a rapidly growing area of electricity in China. In the present paper, interaction mechanisms between the caisson for wind turbines and saturated silt sand are investigated with laboratory tests based on two different installation methods, jacking installation and suction installation. For the jacking installation process, the results indicate that the soil pressures inner and outer the skirt of the caisson vary with a similar feature and the magnitudes of the two are nearly balanced. The tip resistance plays a key role in the total jacking installation resistance. This paper examines the predictive performance of qc method and API approach for jacking installation resistance. It is demonstrated that the qc method provides better predictions. The resistance coefficients are recommended. For the case of suction installation, however, the changes of soil pressures inner and outer the skirt are contrasting. Specifically, the inner pressure and tip resistance fall dramatically, but the outer pressure increases when suction is applied. Seepage effect is found to be an important mechanism for the installation of suction caisson. The reduction ratios of the inner friction and tip resistance follow a power-function with the normalized suction. Based on the test results, a prediction method for the required suction has been developed and evaluated.  相似文献   

17.
The standard penetration test (SPT) and cone penetration test (CPT) are the two most commonly used in-situ tests. In this paper, SPT-CPT correlation is investigated using statistical and regression method based on a database of in-situ tests. Two correlation equations of the SPT N-value and the CPT cone tip resistance qc are proposed. The equations are applied for the liquefaction potential evaluation. Three effect factors including the soil type, mean particle size, and fine content are investigated for SPT-CPT correlation. The simple correlation can be used for the preliminary site investigation with least data and information. The comprehensive one can give more accurate result with detailed data. These two correlation equations are useful for different purposes with different accuracies. The liquefaction evaluations using the proposed correlation method are compared with those from the Chinese code method. It is shown that the proposed correlation can be helpful for site investigation and geotechnical design in practice.  相似文献   

18.
为了研究黄河口海床沉积物固结过程中电阻率同工程力学性质指标的对应关系,探索海床土体固结过程的新型原位监测技术,本文在黄河刁口流路三角洲叶瓣潮坪上,现场取土配置黄河口快速沉积形成的流体状沉积物和观测研究粉质土海床的固结过程。利用静力触探、十字板剪切试验、孔隙水压力监测等原位土工测试手段,实时测定固结过程中海床土强度变化和孔隙水压力消散过程;同时通过埋置自行研制的环形电极探杆,实时测定海床土固结过程中的电阻率变化。通过对比分析海床土电阻率与工程力学性质指标的同步测定数据发现:黄河口饱和粉土的电阻率与微型贯入试验测得的土体贯入强度,静力触探试验测得的比贯入阻力,十字板剪切试验测得的不排水抗剪强度(峰值强度、残余强度)均呈乘幂关系,且相关性良好;海床沉积物在固结过程中的电阻率与孔隙水压力呈负线性相关性。  相似文献   

19.
承受水平荷载作用的桩基,规范中常采用m法进行桩基水平承载力的计算,地基土水平地基抗力系数的比例系数m值在规范中根据地基土的状态、类别以表格给出。在地基勘察中,现在广泛采用静力触探试验。直接利用静力触探数据给出比例系数m值。将使桩基设计所用参数更加直接准确。本文利用天津地区地层大量静力触探资料与地基土状态数据,利用统计分析回归方法,总结出地基土的液性指数IL与静力触探参数锥尖阻力qc及摩阻比Rf间的关系式,针对天津的地层土体,给出利用静力触探资料查用m值的表格,为桩基的设计计算提供资料。  相似文献   

20.
The results presented in this paper are the first published estimates of the complete stress tensor in the Cuu Long and Nam Con Son basins, offshore Vietnam. We analysed in situ stress and pore pressure fields in the sedimentary formations using data from petroleum exploration and production wells to evaluate the stress state in these basins. The data were obtained from the seafloor to 4300 m burial depth and include both hydrostatic and overpressured sections. Minimum horizontal stresses were obtained from extended leak-off tests and mini-fracture tests. Maximum horizontal stresses were estimated from drilling-induced fracture parameters and borehole breakout widths in twelve wells using rock properties measured in the laboratory or estimated empirically from wireline logs. Seven data points are located in sediments, and seventeen data points in igneous basement rocks at depths greater than 3000 m.The estimated magnitudes of σH are 70-110% of the σv magnitudes. Considering the errors in the stress magnitude estimates, their relative magnitudes suggest that a borderline normal/strike-slip stress regime presently exists in normally pressured sequences of the Nam Con Son and Cuu Long basins. Of the twenty-four data points, twenty have effective stress ratios at a critical stress state for faulting on the assumption that there are faults present that are optimally oriented for failure with friction coefficients of ∼0.5. The results suggest that the stress state in these basins is generally critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号