首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于Fluent流体计算平台,运用大涡模拟方法对亚临界雷诺数Re=3900下“X”形排列五圆柱体结构群三维绕流特性进行研究,主要分析来流攻角α与间距比L/D两个关键参数对五圆柱体结构群的尾流区三维涡结构演化与流体力系数的影响,并揭示其内在流动互扰机理。研究表明:来流攻角和间距比的变化对五圆柱体结构群流动控制及互扰效应的影响显著。在小间距比工况下,观察到柱体群间隙区域内流体高速流动的现象,导致五圆柱体之间的互扰作用十分强烈。间隙流对中间圆柱体和下游圆柱体有较强的冲击作用,对其表面的流体力分布特性有显著的影响。另外,大间距比工况下,当α=0°与L/D≥5.0工况时,柱体群尾流效应强于其间隙流效应。当α=22.5°与L/D=7.0时,位于下游与中间处的圆柱体流体绕流特性存在较大差异。而当α=45°与L/D≥6.0时,位于上游与中间处的圆柱体尾流区均会产生正负交替的漩涡结构。  相似文献   

2.
Vibration of two elastically mounted cylinders in an oscillatory flow at a Keulegan-Carpenter number of 10 is simulated numerically. The two cylinders are rigidly connected with each other and are allowed to vibrate in the cross-flow direction only. The aim of this paper is to identify the effects of the orientation of the cylinders and the gap between the cylinders on the vibration. The two-dimensional Reynolds-Averaged Navier-Stokes equations are solved to predict the flow and the cylinder vibration is predicted using the equation of motion. When the two cylinders are in a tandem arrangement, a combined single pair flow regime and attached pair flow regime are observed as reduced velocity exceeds 10 and this combined regime and the single pair regime occurs intermittently. Periodic vibration is found when the two cylinders are in a staggered arrangement with a 45° flow attack angle. When the two cylinders are in a side-by-side arrangement, a new single vortex regime is observed. This single vortex remains attached to the cylinder surface and rotates around the cylinder. The intermittent switch between this single vortex regime and the single pair regime are observed.  相似文献   

3.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   

4.
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation, therefore, scour on the leeside of the breakwater.  相似文献   

5.
《Applied Ocean Research》2004,26(3-4):84-97
The paper aims at presenting a solution of the linearized hydrodynamic radiation problem for two concentric, free surface-piercing truncated vertical cylinders that are forced to independently oscillate in heave in finite depth waters. For the solution of the problem, the flow field around the two bodies is subdivided into ring-shaped fluid regions, in each of which axisymmetric eigenfunction expansions for the velocity potential are made. By implementing Galerkin's method, the various potential solutions are matched and extensive numerical results concerning the hydrodynamic and interaction coefficients in heave for various geometrical configurations presented and discussed.  相似文献   

6.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

7.
两层粘性流体中圆柱体受迫振荡数值模拟   总被引:1,自引:1,他引:1  
研究两层粘性流体中无限长水平圆柱体的受迫振荡问题。在湍流模式下,采用VOF方法追踪两层流体的内界面,基于动网格技术模拟圆柱体的运动边界,对均匀流中横向振荡圆柱体的绕流场进行了数值模拟。计算受迫振荡圆柱体的升力系数、阻力系数随时间的演化曲线和圆柱体的尾涡分布,以及圆柱体的受迫振荡激发两层流体内界面的扰动,并与均匀流体的情况进行了比较分析。研究表明,流体的两层分层效应对受迫振荡圆柱体的升阻力系数和尾涡分布特性都有显著影响,在水下输油气管道涡激振动特性的工程评估中,应考虑流体的密度分层效应。  相似文献   

8.
在一定来流条件下,张力腿平台(tension leg platform,简称TLP)的立柱后缘出现周期性的交替旋涡脱落,致使立柱受到垂直于来流方向的升力和平行于来流方向的阻力作用,导致TLP产生大幅度往复运动,显著增加平台结构和系泊系统的负载。目前,关于单柱、多柱结构绕流问题的研究较多,但对于TLP绕流特性的研究较少,机理尚存不明确的地方。为研究TLP的绕流力变化情况和流场特征,开展了数值模拟分析。利用计算流体动力学数值模拟软件,基于雷诺平均(RANS)法和分离涡模拟(DES)法对TLP绕流场进行仿真分析,揭示了TLP的绕流特性。结果表明,在3种来流角度和多个折合速度Vr下,TLP绕流的流体力系数存在明显差异,升力系数时域曲线呈现脉动性。TLP的上、下游立柱间存在明显的相互作用,影响了旋涡的形成与发展。TLP的旋涡脱落大多集中在平台固有频率附近,且在Vr=7,来流角度为0°时,升力系数频谱峰值最大,旋涡脱落集中。  相似文献   

9.
This work describes a simple and robust engineering approach for the real-time sensing and monitoring of unsteady hydrodynamic loads and moments. Innovative flow diagnostics techniques are used to extract critical flow phenomena such as the state of the boundary layer (laminar, transitional, or turbulent), leading-edge stagnation point (or attachment line), flow separation and reattachment, and vortex pattern and their dynamic characteristics from surface hot-film signatures obtained with multielement, micron-thin surface hot-film sensors operated by a bank of constant voltage anemometers. Unsteady hydrodynamic loads and moments are then obtained as a function of the instantaneous locations of the critical surface signatures. Test results from a few recent experiments are described. The heuristics approach presented here will be useful for the development of closed-loop active control system for advanced autonomous underwater vehicle designs with biologically inspired smart actuators.  相似文献   

10.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

11.
周彬  赵敏  万德成 《海洋工程》2020,38(3):85-93
导管推进器是一种普遍应用于无人遥控潜水器(ROV)等潜器中的特种推进器。在桨叶与导管之间的梢隙中存在非常复杂的流动,本研究基于大涡模拟(LES)对导管推进器的梢隙流动进行了数值模拟分析。通过对时间步长的收敛性研究,建立两套基于不同网格类型的计算模型。将计算结果与试验进行对比,比较两种不同类型网格模拟结果的差异发现,切割体网格能够更好地捕捉到泄涡的细节,并结合梢隙流场的原理分析泄涡发展的过程,梢隙涡的驱动力是吸力面与压力面之间的压差。此外,随着进速系数增大,梢隙周向的涡管轴向分布范围减小,主泄涡发生位置延后,泄出涡的长度和数量都有所减少。  相似文献   

12.
为了改善潮流能水轮机叶片表面流动分离问题,提高其升阻比,本文通过在潮流能水轮机叶片表面加装涡流发生器,来研究涡流发生器对潮流能水轮机水动力学性能的影响。本文以NACA4418翼型为研究对象,分别建立了含VGs和不含VGs的三维模型,利用CFD方法研究了VGs的高度、长度以及相邻一对VGs之间的间距等多个方面对该翼型性能的影响。结果表明:VGs可以有效地提高翼型的最大升力系数;相邻VGs间距的增加对流动分离的抑制有积极影响。此外,通过对尾迹区流线和旋涡的分析,进一步揭示了尾迹区的流场特征。  相似文献   

13.
利用Fluent软件模拟雷诺数为200时不同间距比G/D和直径比d/D情况下的圆柱绕流现象。根据模拟结果分析G/D和d/D对圆柱体的涡脱落形态,大、小柱体的升力,阻力系数和St数的影响,结果表明涡脱落形态随着G/D和d/D的变化呈现不同的形式,在G/D小于临界间距比时呈现单一涡脱落形态,在G/D大于临界间距比时,呈现双旋涡脱落形态;临界间距比随着d/D增大而增大。在临界间距比附近大、小柱体的升力和阻力系数值及St数变化较大,大、小柱体的St数具有相同的变化规律,St随着d/D的增大而减小。  相似文献   

14.
为研究四柱体布置情况下倒角半径变化对柱体绕流水动力特性的影响,使用Fluent软件,采用大涡模拟方法研究了在雷诺数Re=3 900下6种不同倒角半径的柱体在方形四柱体布置时的三维流场。在模型分析验证有效后,分析了柱体后方瞬时流场、水动力参数、时均流场的变化情况。分析结果表明:随着倒角半径的增大,上游柱体的平均阻力系数逐渐减小,下游柱体的平均阻力系数除了在R~+=0.1处增幅很大以外,其余均随倒角半径变大而平稳变大;各柱体的升力系数均方根变化趋势基本相同;R~+=0.1、0.5时,上下游两柱体的升力系数曲线相位相反,而在R~+=0.2、0.3和0.4时,上下游两柱体的升力系数曲线相位相同。  相似文献   

15.
Wave-force coefficients of horizontal circular cylinders inclined with respect to the incoming waves, are studied numerically under conditions when the effects of flow separation are insignificant. The mathematical model is set in terms of a boundary-value problem for the velocity potential of the wave, which is formulated under the assumption of the linear diffraction theory, and solved numerically by the boundary element method. The numerical calculations are performed in the vertical plane, assuming uniform water depths in the direction along the axis of the cylinder. A first-order correction to the pressures is introduced to take account of the asymmetry of the velocity field around the cylinder when it is close to the plane bed. The correction procedure is found to be highly effective in computing the transverse forces for small gap ratios. The numerical results show that irrespective of the values of the gap ratio, the in-line forces are always sensitive to the wave directionality. The transverse forces, however, show sensitivity only for the smaller gap ratios. It is also shown that by accounting for the wave directionality effects in the wave kinematics only, the forces could be estimated to a certain extent by using the hydrodynamic force coefficients of inertia and lift corresponding to the normal waves.  相似文献   

16.
By using a process of successive approximations, the Boundary-Layer equations are solved to determine the separation points of a circular cylinder in oscillatory flow under the conditions of vortex existing. Combining with the discrete vortex model, the separation points and the fluid force coefficients are calculated at different KC numbers and Re numbers, A modified Morison equation is used in calculating the inline forces, and good agreements are obtained between the calculated results and those from other's experiments.  相似文献   

17.
In this paper, the hydrodynamic characteristics and flow field around rectangular and delta hydrofoils, moving with a constant speed beneath the free surface are numerically studied by means of isoparametric boundary element method (IBEM). The quantities (source and dipole strengths) and the geometry of the elements are represented by a linear distribution. Two types of three-dimensional hydrofoils (rectangular and delta) are selected with NACA4412 and symmetric Joukowski sections. Some numerical results of pressure distribution, lift, wave-making drag coefficients and velocity field around the hydrofoils are presented. Also, the wave pattern due to moving hydrofoil is predicted at different operational conditions. Comparisons are made between computational results obtained through this method and those from the experimental measurements and other numerical results which reveal good agreement.  相似文献   

18.
Direct numerical simulation was conducted to investigate the flow past a slotted cylinder at low Reynolds number (Re) of 100. The slotting of cylinder affects the boundary layer separation, vortex formation position, recirculation region length and wake width, which are determined by the type of slit. The streamwise slit (SS1), T-shaped slit (SS3) and Y-shaped slit (SS4) act as passive jets, while the transverse slit (SS2) achieves an alternate self-organized boundary layer suction and blowing. The flow rate in slits fluctuates over time due to the alternate vortex shedding and fluctuating pressure distribution around the cylinder surface. One fluctuation cycle of flow rate is caused by a pair of vortices shedding for SS2, SS3 and SS4, while it is created by each vortex shedding for SS1. The wall shear stress and flow impact on the slit wall partly contribute to the hydrodynamic forces acting on the slotted cylinder. Taking into account the internal wall of slit, the transverse slit plays the best role in suppressing the fluid forces with drag reduction of 1.7% and lift reduction of 17%.  相似文献   

19.
Tapered circular cylinders are employed in a variety of ocean engineering applications. While being geometrically simple, this configuration creates a complex flow pattern in the near wake of the structure. Most previous experimental studies on tapered circular cylinders were dealing with stationary cylinders to explore the wake flow field and vortex shedding patterns past the cylinder. Few studies paid attentions to the vortex induced vibration of the tapered cylinders. This paper reports some results from in-water towing-tank experiments on the vortex-excited vibrations of tapered circular cylinders in a uniform flow. Cylinders with different mean diameters (28 and 78 mm), mass ratios (6.1 and 2.27) and tapers (5–20), along with their equivalent uniform cylinders, have been examined. The single degree of freedom vibrating system has a low mass-damping parameter (m*ξ = 0.0084–0.0279). The Reynolds number, based on mean diameter of the cylinders, ranges from 1400 to 70,200. The reduced velocities vary from 1.5 to 22. Effects of variations in the taper and mass ratios on the lock-in range, the reduced response amplitude, the reduced velocity for the peak vibration response and other stream-wise and cross-flow VIV parameters are reported and discussed.  相似文献   

20.
Wave forces acting on submerged circular cylinders moving forward with a constant velocity in regular waves are investigated experimentally. Hydrodynamic forces acting on the cylinder forced to surge in a steady are also measured and hydrodynamic coefficients were obtained. Wave force coefficients obtained from wave force measurements are compared with the hydrodynamic coefficients from surging tests, and the similarity and difference between them are discussed. Experiments show that these coefficients are quite different from those of the cylinder without a forward velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号