首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of a two-dimensional finite-width wedge entering water near a freely floating body is considered through the velocity potential theory for the incompressible liquid with the fully nonlinear boundary conditions on the free surface. The problem is solved by using the boundary element method in the time domain. The numerical process is divided into two phases based on whether the interaction between the wedge and floating body is significant. In the first phase, when the single wedge enters water at initial stage, only a small part near its tip is in the fluid, the problem is studied in a stretched coordinate system and the presence of the floating body has no major effect. In the second phase, the disturbance by water entry of the wedge has reached the floating body, and both are considered together in the physical system. The auxiliary function method is adopted to decouple the nonlinear mutual dependence between the motions of the wedge and floating body, both in three degrees of freedom, and the fluid flow, as well as the interaction effects between them. Case studies are undertaken for a wedge entering water in forced or free fall motion, vertically or obliquely. Results are provided for the accelerations, velocities, pressure distribution and free surface deformation, and the interaction effects are discussed.  相似文献   

2.
Nonlinear interactions between waves and floating bodies are investigated using the weakly compressible Smoothed Particle Hydrodynamic (WCSPH) method. An improved algorithm based on the dynamic boundary particles (DBPs) is proposed to treat the moving boundary of the floating body. The force exerted on the floating body boundary particle by the particles surrounding it is evaluated using the volume integration of the stress tensors obtained from the momentum equation in its compact support. The improved WCSPH model is validated by the experimental results. The numerical test cases of the vertical oscillation of a rectangular box, the damped rolling oscillation of a floating box and the wave forces on a fixed rectangular box are then carried out to demonstrate the performance of the proposed model. Finally the evolution in time of the dynamic response of the freely floating body under nonlinear waves are discussed and compared with experimental results.  相似文献   

3.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

4.
In the present study, a novel method is proposed for the separation of the second-order sum- and difference-frequency wave forces—that is, quadratic transfer functions (QTFs)—on a floating body into three components due to wave–wave, wave–motion, and motion–motion action. By applying the new QTF components, the second-order wave forces on a floating body can be strictly computed in the time domain. In this work, the boundary value problems (BVPs) corresponding to the three kinds of QTF components were derived, and non-homogeneous boundary conditions on the free surface and the body surface were obtained. The second-order diffraction potentials were determined using the boundary integral equation method. In the solution procedure, the highly oscillatory and slowly converging integral on the free surface was evaluated in an accurate and effective manner. Furthermore, the application of the QTF components in the time domain was demonstrated. The second-order exciting forces in the time domain were divided into three parts. Each part of these forces was computed via a two-term Volterra series model based on the incident waves, the first-order motion response, and the QTF components. This method was applied to several numerical examples. The results demonstrated that this decomposition yields satisfactory results.  相似文献   

5.
The coupled system of two side-by-side fixed and/or floating bodies interacting with a large amplitude nonlinear wave is studied using a direct time domain solution method. The numerical model is based on a three-dimensional mixed Eulerian–Lagrangian (MEL) method under certain simplifying approximations permitting Rankine panel scheme to be implemented over a time-invariant boundary surface to solve the boundary value problem for the unknown velocity potentials. A 4th order Adams–Bashforth–Moulton scheme is used for time marching of rigid-body motion histories of the individual bodies and evolution of the free-surface including the gap region in which large resonant fluid motions occur. A systematic study has been carried out to evaluate the performance of the developed time domain method in simulating the forces and motions as well as the fluid motion in the gap region for the two body system under various arrangements and in different wave-headings. At first, the computed numerical results have been validated and verified with computational and experimental results available in literature for standard geometries such as vertical truncated cylinders and rectangular boxes. Secondly, effectiveness of the damping lid model which is introduced to suppress wave resonance in the gap region is investigated including its influence on maximum sway forces on fixed and floating rectangular barges in side-by-side configurations. Thirdly, comparative studies on absolute and relative motion response for two cases (two rectangular barges, and a FLNG-FPSO + shuttle tanker) in side-by-side arrangement are detailed to bring out the importance of nonlinearities arising due to steep nonlinear incident waves. Finally, coupled motions of the two-body system of an FPSO and a shuttle tanker floating in side-by-side configuration in a steep nonlinear wave field are studied in which the two bodies are connected through hawsers, and also the FPSO is moored to the ground. Additionally there is a fender between the two bodies.  相似文献   

6.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

7.
The application of a Smoothed Particle Hydrodynamics (SPH) model to simulate the nonlinear interaction between waves and a moored floating breakwater is presented. The main aim is to predict and validate the response of the moored floating structure under the action of periodic waves. The Euler equations together with an artificial viscosity are used as the governing equations to describe the flow field. The motion of the moored floating body is described using the Newton’s second law of motion. The interactions between the waves and structures are modeled by setting a series of SPH particles on the boundary of the structure. The hydrodynamic forces acting on the floating body are evaluated by summing up the interacting forces on the boundary particles from the neighboring fluid particles. The water surface elevations, the movements of the floating body and the moored forces are all calculated and compared with the available experimental data. Good agreements are obtained for the dynamic response and hydrodynamic performance of the floating body. The numerical results of different immersion depths of the floating body are compared with that of the corresponding fixed body. The effects of the relative length and the density of the structure on the performance of the floating body are analyzed.  相似文献   

8.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2  
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

9.
The mooring of offshore floating structures, such as offshore platforms, in large waves against drift forces and rotational moments is a challenging problem in offshore engineering. To accurately investigate such problems, called positioning problems, the time-averaged steady forces of the second order known as the wave drift forces must be taken into account. Fortunately, a cloaking phenomenon occurs under certain conditions and dramatically reduces the wave drift force acting on such a floating body, as previously reported by several researchers. In the diffraction problem of water waves, cloaking refers to the condition where there is no scattering in the form of radial outgoing waves. The reduction of wave drift force on a truncated cylinder with the occurrence of cloaking phenomenon has been numerically and experimentally confirmed. In this paper, the arrangement of several small circular cylinders at regular intervals in a circle concentric with a fixed floating body is considered as an effective means of reducing the wave drift force. Using a combination of a higher-order boundary element method (HOBEM) and wave interaction theory, the influences of the geometric parameters of the outer surrounding cylinders on the wave drift force and the total scattered-wave energy are systematically investigated and discussed. A quasi-cloaking phenomenon is first found and reported in the present study, which is beneficial and flexible for application in practical engineering. More than one quasi-cloaking trigger (where a trigger is an occurrence condition) can be found simply by varying the distance between the inner and outer floating bodies.  相似文献   

10.
The two-dimensional problem of wave transformation by, and motions of, moored floating objects is solved numerically as a boundary value problem by direct use of Green's identity formula for a potential function. The cross-sectional shape of the floating object, the bottom configuration and the mooring arrangements may be all arbitrary. For a given incident wave, the three modes of body motion, the wave system and mooring forces are all solved at the same time. A laboratory experiment is conducted to verify the theory. Generally good agreements between the theory and experiments are obtained as long as the viscous damping due to flow separation is small. A numerical experiment indicates that a conventional sluck mooring is to worsen the wave attenuation by a floating breakwater and that a properly arranged elastic mooring can considerably improve the wave attenuation by a floating breakwater.  相似文献   

11.
本文用有限元法配合时步处理来求解三维非线性水波的绕射问题,自由表面条件和物面条件都满足到二阶,采用人工阻尼区来吸收反射波,流场内的速度势通过求解有限元方程得到。对垂直圆柱体的绕射问题进行了计算,得到了自由表面波高时间历程和圆柱所受到的波浪力,计算结果和有关文献的理论计算结果进行了比较。  相似文献   

12.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

13.
Time domain simulations of nonlinear motions of two-dimensional floating bodies in waves are presented. The so called `body exact' approach is adopted in a numerical wave tank. A new scheme for pressure evaluation on the wetted hull is developed and systematically used with good results in terms of accuracy and stability. Strongly flared geometries are successfully handled even at very large amplitude motions. The validation of the code is carried out according to the 20th ITTC Seakeeping Committee recommendations through internal checks of consistency and through comparisons with available experimental data.  相似文献   

14.
Based on the Rankine source, this paper proposed a time-domain method for analyzing the three-dimensional wave–structure interaction problem in irregular wave. A stable integral form of the free-surface boundary condition (IFBC) is employed to update the velocity potential on the free surface. A multi-transmitting formula, with an artificial wave speed, is used to eliminate the wave reflection for radiation condition on the artificial boundary. An effective multi-transmitting formula, coupled with damping zone method, is further used to analyze the irregular wave diffraction at the artificial boundary. We investigate hydrodynamic forces on floating structure and compare our solution to the frequency-domain solution. It is shown that long time simulation can be done with high stability and the numerical results agree well with the solution obtained under the frequency domain. The efficiency of the proposed multi-transmitting formula and the coupled methods for radiation boundary make them promising candidates in studying the irregular water wave problem in time domain.  相似文献   

15.
A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.  相似文献   

16.
This paper presents the derivation of a general method for calculating wave forces on the cylindrical members of offshore structures. By means of the proposed method one can calculate the wave loading on cylindrical members of fixed or floating offshore structures orientated randomly in waves. This method of calculating wave forces is based on the linear Airy wave theory. Calculation procedure of wave force components is presented in great detail on the basis of wave particle kinematic properties obtained from the linear Airy wave theory. In the procedure of calculating wave forces presented, definitions of the wave reference system for propagating wave, the structure reference system for the platform and the member reference system for the tubular members of the structure are first established, and then the calculation of wave forces is given in terms of its components, which are pressure, acceleration and velocity forces, including current forces. At the end of the paper, expressions of total heave, sway and surge forces and total roll, pitch and yaw moments acting on the platform are given as a sum of these forces acting on each member of the platform. The calculation procedure derived in this paper provides a very efficient means of calculating wave forces and moments during the time-domain simulations of a floating platform experiencing large amplitude motion in intact, progressive flooding and damaged conditions. Comparisons of the predictions with the measurements which will be presented elsewhere reveal that the calculation procedure developed can predict large amplitude oscillatory and steady motion characteristics of an intact and damaged platform in waves with an acceptable degree of accuracy.  相似文献   

17.
Based on a parallel SPH-LES model, a three dimensional numerical wave basin is developed to study wave interaction with coastal structures. The OpenMP programming technology combined with an existing MPI program contained in the parallel version of SPHysics code has been implemented to enable the simulation of hundred millions of particles running on a computer cluster. As part of the numerical basin development work an active absorbing wave maker and a sponge layer are introduced. The dynamic boundary conditions are also corrected to reduce the spurious effects. Wave generation and propagation in the numerical wave basin is first tested and confirmed with analytical results. Then, the model is applied to simulate wave interactions with a vertical breakwater and a vertical cylinder in order to further assess the capability of the numerical wave basin. The predicted free surface elevation near the vertical breakwater is compared with the experimental data while the horizontal forces and overturning moments acting on the vertical cylinder are verified with the analytical results. In all these cases the model results show excellent agreement with the validation data.  相似文献   

18.
为了研究波浪与抛石潜堤相互作用过程中大自由表面变形和堤内渗流等强非线性紊流运动问题,利用改进的MPS法,建立了模拟波浪与抛石潜堤相互作用的MPS法数值计算模型。模型将抛石潜堤假定为均质多孔介质,采用Drew的二相流运动方程描述多孔介质内外的流体运动;通过在动量方程中增加非线性阻力项,并引入亚粒子尺度紊流模型,模拟波浪与可渗结构物相互作用过程中的紊流运动。选取“U”型管中多孔介质内渗流过程和孤立波与可渗潜堤相互作用两个典型的渗流问题,通过将数值计算结果与理论解和实测值的对比分析,对所提出的MPS法紊流渗流模型的模拟精度进行验证。结果表明:基于改进的MPS法构建的垂向二维紊流渗流模型可以很好地再现“U”型管中多孔介质内渗流以及波浪作用下可渗潜堤内外的复杂流场,显著缓解流-固界面处的压力震荡与粒子分布不均匀问题,实现了较高的模拟精度。  相似文献   

19.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

20.
Nonlinear Dynamic Behaviors of A Floating Structure in Focused Waves   总被引:1,自引:1,他引:0  
曹飞凤  赵西增 《海洋工程》2015,29(6):807-820
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号