首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
The experimental results of time average velocity components measured around circular pier models during transient scour stage using acoustic Doppler velocimeter are shown for flow pattern and turbulence characteristics. Totally, four experiments were performed under clear water scour conditions in a model of gravel bed stream. Four circular pier models of diameter 6.6, 8.4, 11.5, and 13.5?cm were used for this study. Detailed controlled measurements on velocity components, and turbulence intensities near the pier and in scour hole at 0° and 180° plane are shown. Flow structure around a pier model in the presence of a scoured region was compared with the flow structure similarly noticed around all pier model runs by utilizing the observations taken at 0° and 180° plane from flow axis. Size of the primary vortex at 0° plane with largest diameter pier model in place (R4 run) is found to be maximum and was approximately 61% larger than that for smallest diameter pier model in place (R1 run). The time-averaged velocity components of turbulence intensities plots at 0° and 180° planes are also presented around each pier.  相似文献   

2.
The expansion of wind fields observed at fixed times (four times daily) in complex empirical orthogonal functions is performed for the Japan Sea area (34°–53° N, 127°–143° E). The wind fields are taken from the 1998–2004 NCEP/NCAR Reanalysis data with better spatial resolution (1° × 1°) than the standard product, which are publicly available on the Internet. Major modes of wind variability in the Japan Sea area are identified. The modes determine a general direction of air-mass transport throughout a year, zonal and meridional modulation, and a cyclonic and an anticyclonic eddy component. Objective classification of wind fields with respect to the prevailing flow direction is performed, and wind stress and wind-curl patterns are obtained for major events in the cold and warm periods of the year. The pattern obtained can be used in hydrodynamic numerical models of the general circulation of the Japan Sea.  相似文献   

3.
The probability distribution of the sea surface slope has been estimated using sun glitter images derived from the visible wavelength radiometer on the Geostationary Meteorological Satellite (GMS) and surface vector winds observed by spaceborne scatterometers. The brightness of the visible images is converted to the probability of wave surfaces which reflect the sunlight toward GMS in grids of 0.25° × 0.25° (latitude × longitude). The slope and azimuth angle required for the reflection of the sun's rays toward GMS are calculated for each grid from the geometry of GMS observation and location of the sun. The GMS images are then collocated with surface wind data observed by three scatterometers. Using the collocated data set of about 30 million points obtained in a period of 4 years from 1995 to 1999, the probability distribution function of the surface slope is estimated as a function of wind speed and azimuth angle relative to the wind direction. The results are compared with those of Cox and Munk (1954a). The surface slope estimated by the present method shows a narrower distribution and much less directivity relative to the wind direction than that reported by Cox and Munk. It is expected that their data were obtained under conditions of growing wind waves. In general, wind waves are not always developing, and the slope distribution might differ from the results of Cox and Munk. Most of our data are obtained in the subtropical seas under clear-sky conditions. This difference in the conditions may be the reason for the difference of slope distribution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The problem of simulating quasi-biennial oscillations (QBOs) of zonal velocity in the equatorial stratosphere in atmospheric general circulation models is considered. In accordance with the results from Part I of this study on the basis of the models developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), the possibility of implementing (in these models) mechanisms of QBO excitation through both the interaction of planetary waves with the mean flow and breaking of short gravity waves is investigated. A new high-resolution 2° × 2.5° × 80 version of the INM RAS model is designed, a climate simulation with the two 2° × 2.5° × 39 and 2° × 2.5° × 80 versions of the INM RAS model is briefly described, results of spectral analysis of equatorial wave activity are presented, and the QBO formation processes in these models are considered in detail. For the new 2° × 2.5° × 80 model, realistic QBOs of zonal wind are obtained as the result of the action of both mechanisms.  相似文献   

5.
评估了23个IPCC-AR4模式在低纬地区1948—1999年7—9月大尺度环流场的模拟性能,重点关注西北太平洋区域的西太副高、季风槽以及台风活动海域的垂直风切变。结果显示,绝大多数模式的7—9月低纬地区500hPa平均高度场、850hPa风场空间分布与NCEP都具有很高的相似性,但大多模式500hPa高度场存在系统性偏低,而850hPa风场偏强。所有模式模拟的西北太平洋副高脊线与NCEP都有一致的西南-东北走向,但有些模式的脊线位置偏离NCEP的较远。有4个模式没有模拟出类似于NCEP的季风槽线。综合模式对夏季热带环流场、西北太平洋副热带高压、季风槽以及西北太平洋热带气旋活动关键区域垂直风切变气候特征的模拟性能,按性能优劣,排在前10的模式依次是mpi_echam5、cccma_t63、gfdl_cm2_1、cnrm_cm3、cccma_t47、ukmo_hadgem1、ingv_echam4、ncar_ccsm3_0、csiro_mk3_5、mri_cgcm2_3_2a;排在后6位的模式是inmcm3_0、iap_fgoals1_0_g、ipsl_cm4、miroc3_2_medres、giss_eh、giss_er。  相似文献   

6.
Upper Ocean Sensitivity to Wind Forcing in the South China Sea   总被引:2,自引:0,他引:2  
The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) has been used to investigate the sensitivity of the upper South China Sea (SCS) circulation to various atmospheric wind forcing products. A 1/16° 6-layer, thermodynamic Pacific Ocean north of 20°S version of NLOM has been integrated using observed climatological monthly mean winds (Hellerman and Rosenstein, 1983) and climatologies based on two atmospheric prediction models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP). ECMWF products include the 10 meter winds (at both 1.125° and 2.5° resolution) and surface stresses (1.125°). The NCEP forcing (1.875°) is a surface stress product. Significant differences exist in the wind stress curl patterns and this is reflected in the upper ocean model response, which is compared to observational data. The model experiments suggest the generation of the West Luzon Eddy is controlled by positive wind stress curl. The degree of Kuroshio intrusion into the SCS, however, is not affected by wind stress curl but is governed by the coastline geometry of the island chain within Luzon Strait. The summertime offshore flow from the Vietnamese coast is present in all simulations but the dipole structure on either side of the jet is variable, even among experiments with similar wind stress curl patterns. The ECMWF surface stresses exhibit spurious coastal wind stress curl patterns, especially in locations with significant orographic features. This manifests itself in unrealistic small scale coastal gyres in NLOM. High resolution basin-scale and coastal models might be adversely affected by these stresses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Results of measurements of the atmospheric turbulence in the layer between 1.5 and 21 m above sea level and the drag coefficient of the sea surface as the wind blows from a 4-km-long mountainous slope with a mean inclination of 11° are presented. The measurements of wind-speed profiles and its fluctuations at several levels, waves, and the main meteorological parameters were carried out in autumn 2005 and 2008 from a stationary platform located in the Black Sea at a distance of approximately 1 km from the southern coast of Crimea. It is shown that during weak synoptic wind a low-level wind jet develops at night over the sea with a maximum velocity up to 5–6 m/s at a level of approximately 6 m over the sea induced by the katabatic wind over the coastal slope. According to the approximate estimates, the horizontal scale of the low-level jet can reach a few tens of kilometers. This flow is characterized by the dissipation rate of the turbulence energy independent of height and low-frequency velocity fluctuations related to the gravity waves and advection of turbulence from the coast. It is shown that the lower part of the boundary layer (up to a height of 3 m) is adjusted to the sea-surface roughness. The dependencies of the drag coefficient on the wind speed or wave age are steadier than in the data for the open sea. However, the age of the waves is not a universal parameter at long and short fetches.  相似文献   

8.
A modified three-parameter model of turbulence for a thermally stratified atmospheric boundary layer (ABL) is presented. The model is based on tensor-invariant parametrizations for the pressure-strain and pressure-temperature correlations that are more complete than the parametrizations used in the Mellor-Yamada model of level 3.0. The turbulent momentum and heat fluxes are calculated with explicit algebraic models obtained with the aid of symbol algebra from the transport equations for momentum and heat fluxes in the approximation of weakly equilibrium turbulence. The turbulent transport of heat and momentum fluxes is assumed to be negligibly small in this approximation. The three-parameter E ? ε ? 2> model of thermally stratified turbulence is employed to obtain closed-form algebraic expressions for the fluxes. A computational test of a 24-h ABL evolution is implemented for an idealized two-dimensional region. Comparison of the computed results with the available observational data and other numerical models shows that the proposed model is able to reproduce both the most important structural features of the turbulence in an urban canopy layer near the urbanized ABL surface and the effect of urban roughness on a global structure of the fields of wind and temperature over a city. The results of the computational test for the new model indicate that the motion of air in the urban canopy layer is strongly influenced by mechanical factors (buildings) and thermal stratification.  相似文献   

9.
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.  相似文献   

10.
Long time-series of sea surface temperature (SST) and pseudo wind stress (τ) in six areas in the South-East Atlantic are analysed as possible inputs into fisheries models. The areas encompass oceanic and coastal regimes. A clear seasonal signal is evident in all areas, with an amplitude in SST of 3–4°C in the upwelling areas and 5°C farther offshore and on the Agulhas Bank. Warming lags in the north and offshore by 1–2 months. Monthly variability is highest in the upwelling areas. An increasing trend in SST is suggested in all areas, the post-World War II era being about 1,0°C warmer than earlier periods. Some coherence occurs between areas at times, although at other times the anomalies are distinctly out of phase. There is a suggestion of an upward trend in the equatorward wind stress in some offshore areas after 1964, with a sharp change in 1975. Benguela Niños are evident in the environmental record and have a periodicity of around 10 years.  相似文献   

11.
A comparison of monthly wind stress derived from winds of NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis and UWM/COADS (The University of Wisconsin-Milwaukee/Comprehensive Ocean-Atmosphere Data Set) dataset (1950–1993), and of NCEP/NCAR reanalysis and satellite-based QuikSCAT dataset (2000–2006), is made over the South Atlantic (10°N–40°S). On a mean seasonal scale, the comparison shows that these three wind stress datasets have qualitatively similar patterns. Quantitatively, in general, from about the equator to 20°S in the mid-Atlantic the wind stress values are stronger in NCEP/NCAR data than those in UWM/COADS data. On the other hand, in the Intertropical Convergence Zone (ITCZ) area the wind stress values in NCEP/NCAR data are slightly weaker than those in UWM/COADS data. In the South Atlantic, between 20° S–40°S, the QuikSCAT dataset presents complex circulation structures which are not present in NCEP/NCAR and UWM/COADS data. The wind stress is used in a numerical ocean model to simulate ocean currents, which are compared to a drifting-buoy observed climatology. The modeled South Equatorial Current agrees better with observations between March–May and June–August. Between December–February, the South Equatorial Current from UWM/COADS and QuikSCAT experiments is stronger and more developed than that from NCEP/NCAR experiment. The Brazil Current, in turn, is better represented in the QuikSCAT experiment. Comparison of the annual migration of ITCZ at 20° and 30°W in UWM/COADS and NCEP/NCAR data sources show that the southernmost position of ITCZ at 30°W in February, March and April coincides with the rainy season in NE Brazil, while the northernmost position of ITCZ at 20°W in August coincides with the maximum rainfall of Northwest Africa.  相似文献   

12.
The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.  相似文献   

13.
Seasonal coastal upwelling was analyzed along the NW African coastline (11–35°N) from 1981 to 2012. Upwelling magnitudes are calculated by wind speed indices, sea-surface temperature indices and inferred from meteorological station, sea-surface height and vertical water column transport data. A permanent annual upwelling regime is documented across 21–35°N and a seasonal regime across 12–19°N, in accordance with the climatology of previous studies. Upwelling regions were split into three zones: (1) the Mauritania–Senegalese upwelling zone (12–19°N), (2) the strong permanent annual upwelling zone (21–26°N) and (3) the weak permanent upwelling zone (26–35°N). We find compelling evidence in our various indices for the Bakun upwelling intensification hypothesis due to a significant coastal summer wind speed increase, resulting in an increase in upwelling-favorable wind speeds north of 20°N and an increase in downwelling-favorable winds south of 20°N. The North Atlantic Oscillation plays a leading role in modifying interannual variability during the other seasons (autumn–spring), with its influence dominating in winter. The East Atlantic pattern shows a strong correlation with upwelling during spring, while El Niño Southern Oscillation and Atlantic Multi-decadal Oscillation teleconnections were not found. A disagreement between observationally-based wind speed products and reanalysis-derived data is explored. A modification to the Bakun upwelling intensification hypothesis for NW Africa is presented, which accounts for the latitudinal divide in summer wind regimes.  相似文献   

14.
利用2000—2009年美国国家航空航天局(NASA)在中国近海海域(0°~45°N,105°~135°E)的QuikSCAT卫星遥感风场资料与近海测风塔(位于上海近海)、海上石油平台(位于东海和渤海)、岛屿站(南海珊瑚岛和西沙海边观测塔)的实测风场资料进行对比分析,检验了QuikSCAT卫星遥感风场资料在中国近海海域的可靠性。研究结果如下:各站点实测风速与站点位置以及站点附近的QuikSCAT卫星遥感风场资料相关系数均在0.7以上;QuikSCAT卫星遥感风场资料与海上石油平台的风速均方根误差较小(约1.5 m/s);其年均值均大于实测值,差值范围是0.1~1.3 m/s;其Weibull形状参数K与海上石油平台以及近海测风塔的K值较为接近,表明QuikSCAT卫星遥感风场资料各风速段的频次分布形态与观测站的实测值基本吻合,QuikSCAT卫星遥感风场资料能基本合理地反映出中国近海风速的分布状况。利用QuikSCAT卫星遥感风场资料分析了中国近海及其邻近水域风速的空间分布特征:(1)台湾海峡是中国近海风速最大的区域,从台湾海峡向东北至日本海,往西南至南海北部115°E附近和巴林塘海峡为风速的次大值区;(2)28°N到长江入海口的东海海域年均风速为7.0~7.5 m/s,在黄海和渤海为5.5~7.0 m/s,在南海北部自东向西由8.5 m/s递减为6.0 m/s,北部湾最大风速区位于东方附近海域。  相似文献   

15.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140–155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E–180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
为提高降雨条件下星载全极化微波辐射计海面风场精度,通过匹配WindSat海面风场和降雨率数据以及美国国家浮标中心浮标观测数据,得到18 996组匹配样本,深入分析了降雨对海面风场反演精度的严重影响,构建了风场校正模型。试验结果表明,降雨导致海面风速被严重高估,风向误差随着降雨率的增大而增大。校正后的风速精度在低风速段提升明显。无论降雨率多大,校正后风速精度均比校正前高。风速均方根误差由原来的2.9 m/s降低到了2.1 m/s,风向均方根误差由原来的26.9°降低到了26.3°。  相似文献   

17.
The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.  相似文献   

18.
利用渤海湾北岸祥云岛岸基站2017—2018年观测数据和两座梯度测风塔2011—2013年观测资料分别分析了当地海陆风和湍流强度特征,并重点对不同天气系统所致大风条件下的湍流强度特点做了剖析。结果表明:渤海湾北岸海陆风特征明显,昼夜风向主要由SSW向ENE转变,夏季昼夜风向转换尤为显著。整体而言,风速和湍流强度随高度增大分别呈增大、减小趋势,且近海面层湍流强度小于近地层湍流强度。湍流强度具有显著的季节性特征,夏季大、冬季小、春秋季变化不明显,且近海面层湍流强度相对近地层变化平缓。近海面层70 m及以下湍流强度在偏东大风条件下反而比近地层湍流强度大,雷雨大风期间近海面层和近地层均出现湍流强度随高度增大而增大、风速随高度增大而减小的特殊情况,台风靠近风塔时各层风速显著增大、湍流强度变化不明显,但台风中心到达时湍流强度迅速增至峰值,二者时间一致并早于风速最小值出现时间约1 h。近海面层和近地层有8%~10%样本的湍流强度超出了IEC-61400设计标准,建议渤海湾北岸风力发电风机抗湍流参数调整至0. 43~0. 49。  相似文献   

19.
This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier?Stokes Equations (RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a body-fixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models (TCMs), the RNG model with wall functions and curvature correction and the Shear Stress Transport (SST) model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×106 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.  相似文献   

20.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号