首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The results of a Sr isotopic study of coexisting alkaline silicate rocks and carbonatites of two Cretaceous alkaline complexes of India, Amba Dongar (Deccan Flood Basalt Province) and Sung Valley (Rajmahal–Bengal–Sylhet Flood Basalt Province) are reported. The overlapping nature of initial Sr isotopic ratios of alkaline rocks and carbonatites of both the complexes is consistent with a magmatic differentiation model. Modelling of initial 87Sr/86Sr variation in alkaline rocks of Amba Dongar is consistent with a process of crustal assimilation by the parent magma undergoing simultaneous fractional crystallization of silicate rocks and silicate–carbonate melt immiscibility. A maximum of ∼5% crustal contamination has been estimated for the parent magma of Amba Dongar, the effect of which is not seen in the Sr isotope ratio of carbonatites generated by liquid immiscibility. A two point Rb–Sr isochron of the Sung Valley carbonatites, pyoxenite and a phlogopite from a carbonatite yielded an age of 106±11 Ma, which is identical to the 40Ar–39Ar age of this complex. The same age for the carbonatites and the alkaline silicate rocks, similar initial Sr ratios and the higher Sr concentration in the former than the latter favour the hypothesis of liquid immiscibility for the generation of the Sung Valley. The higher initial 87Sr/86Sr ratio for these complexes than that of the Bulk Earth indicates their derivation from long-lived Rb/Sr-enriched sources.  相似文献   

2.
Results of different isotopic and trace element studies on three carbonatite–alkaline complexes (Amba Dongar, Mundwara and Sarnu-Dandali) of the Deccan flood basalt province, India, are presented. The Amba Dongar (Ambadungar) complex has been dated precisely to 65.0±0.3 Ma by the 40Ar–39Ar method. The minimum initial Sr isotopic ratio of alkaline rocks of Amba Dongar is found to be same as that of the coexisting carbonatites, suggesting their derivation from a common parent magma, probably through liquid immiscibility. The rare earth element abundance in these rocks also supports the liquid immiscibility hypothesis. Further investigation revealed that the parent magma of this complex has been contaminated (∼5%) by the lower crustal material, which is clearly reflected in the initial 87Sr/86Sr variation of alkaline rocks but not in the carbonatites. Sr study also suggests that the mantle source of Amba Dongar like the other two complexes is a Rb/Sr enriched source. The temporal and spatial relationships of all the three complexes with the Deccan flood basalts support the hypothesis of reunion plume origin for these. Fractional crystallization and subsequent hydrothermal/meteoric alteration are found to have controlled the stable carbon and oxygen isotopic variations in carbonatites. This study suggests that all the complexes have been derived from isotopically average mantle except for a particular batch of parent magma at Amba Dongar, which appears to have incorporated recycled crustal carbon. In a plume origin scenario such incorporation indicates the entrainment of 13C-enriched subcontinental lithospheric mantle by the plume.  相似文献   

3.
In most alkaline-ultrabasic-carbonatite ring complexes, the distribution of trace elements in the successive derivatives of mantle magmas is usually controlled by the Rayleigh equation of fractional crystallization in accordance with their partition coefficients, whereas, that of late derivatives, nepheline syenites and carbonatites, is usually consistent with trends characteristic of silicate-carbonate liquid immiscibility. In contrast to the carbonatites of ring complexes, carbonatites from deep-seated linear zones have no genetic relation with alkaline-ultrabasic magmatism, and the associated alkaline rocks are represented only by the nepheline syenite eutectic association. The geochemical study of magmatic rocks from the Vishnevye Gory nepheline syenite-carbonatite complex (Urals), which is assigned to the association of deep-seated linear zones, showed that neither differentiation of a parental melt nor liquid immiscibility could produce the observed trace element distribution (Sr, Rb, REE, and Nb) in miaskites and carbonatites. Judging from the available fragmentary experimental data, the distribution patterns can be regarded as possible indicators of element fractionation between alkaline carbonate fluid and alkaline melt. Such trace element distribution is presumably controlled by a fluid-melt interaction; it was also observed in carbonatites and alkaline rocks of some ring complexes, and its scarcity can be explained by the lower density of aqueous fluid released from magma at shallower depths.  相似文献   

4.
Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.  相似文献   

5.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   

6.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

7.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   

8.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   

9.
We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr–143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with >?4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of <?4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures (~?4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative εNdi (??5.2 to ??9.4) and radiogenic εSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10–20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.  相似文献   

10.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

11.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

12.
The Panzhihua mafic intrusion, which hosts a world-class Fe-Ti-V ore deposit, is in the western Emeishan region, SW China. The formation age(~260 Ma), and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination. To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit, two different models have been provided to explain the formation, namely silicate immiscibility and normal fractional crystallization. Silicate...  相似文献   

13.
Natrocarbonatite flows in the crater of the volcano Oldoinyo Lengai (Tanzania) are the only carbonatite magmas observed to erupt and have provided strong arguments in favor of a magmatic origin for carbonatite. The currently favored explanation for the genesis of these carbonatites by liquid immiscibility between a silicate and a carbonatite melt is questioned based on the extremely low eruption temperatures of 544-593 °C and compositional and mineralogical characteristics not in agreement with experimental constraints. Experimental investigations of the relationship between Oldoinyo Lengai natrocarbonatite and related silicate rock compositions do indicate that alkali-bearing peralkaline carbonatite with liquidus calcite can form by liquid immiscibility. At the same time, these experiments result in evidence which speaks against a liquid immiscibility origin for the highly alkaline and peralkaline Oldoinyo Lengai natrocarbonatite. On the carbonatite side of the miscibility gap, fractional crystallization cannot account for a liquid evolution from alkali-bearing peralkaline carbonatite to highly alkaline natrocarbonatite. Such an evolution does not seem to be compatible with the liquidus mineral assemblages and the chemistry of Oldoinyo Lengai natrocarbonatite. No natural silicate magma is known to produce natrocarbonatite compositions by liquid immiscibility. The best interpretation of the Oldoinyo Lengai natrocarbonatite flows involves expulsion of a cognate, mobile, alkaline, and CO2-rich fluid condensate. This conclusion is supported by recent studies of silicate and carbonatite melt inclusions in minerals of ultramafic alkaline complexes, trace element partitioning, isotopic constraints, and by experimental data on major element partitioning between coexisting H2O-CO2-rich fluid and carbonatitic melt. In contrast to all other suggested modes of formation, an origin of Oldoinyo Lengai natrocarbonatite from cognate fluid appears best to be in agreement with the field observations, the petrography, mineralogy, and geochemistry of Oldoinyo Lengai natrocarbonatite and the dynamics of the Oldoinyo Lengai natrocarbonatite extrusion.  相似文献   

14.
The Myggbukta caldera complex and a swarm of basic dykes constitute the latest Tertiary magmatism in the Hold with Hope region, East Greenland. The Sr and Nd isotope ratios of these rocks show coherent variations which extend to high 87Sr/86Sr and low 143Nd/144Nd values and require a contribution from continental lithosphere. Broad correlations with major element differentiation indices suggest that the continental component was incorporated during magmatic differentiation thereby favouring a crustal contamination process. Trace element concentrations are strongly correlated with isotopic compositions but display ranges for many incompatible elements which extend beyond likely crustal contaminant compositions. This is readily modelled by AFC processes in which the dominant cause of trace element enrichment is the concentration effect of fractional crystallisation rather than the composition of the contaminant. The simplest such models still require unrealistically high degrees of fractional crystallisation to explain the ten-fold enrichment of some trace elements. This can be overcome if the primary magmas entering the crust already had highly variable trace element compositions. Such variability is readily achieved if melts from different parts of the melting column escape without thorough homogenization. An AFC model which incorporates variability in parental magma composition is then able to simulate the range of compositions observed at Hold with Hope. This carries the implication that the variations observed are more readily attributed to changes in uncontaminated parental magma than to variations in the composition or amount of contaminant. Received: 5 March 1998 / Accepted: 16 June 1998  相似文献   

15.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


16.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

17.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

18.
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr?=?0.70661–0.70754 and 143Nd/144Nd?=?0.51169–0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.  相似文献   

19.
The Lower Cretaceous Jacupiranga complex, in the central-southeastern portion of the South American Platform, includes carbonatites in close association with silicate rocks (i.e. strongly and mildly silica-undersaturated series). Here we document the first hafnium isotope data on the Jacupiranga complex, together with new trace element and Pb isotope compositions. Even though liquid immiscibility from a carbonated silicate melt has been proposed for the genesis of several Brazilian carbonatites, isotopic and geochemical (e.g., Ba/La ratios, lack of pronounced Zr-Hf and Nb-Ta decoupling) information argues against a petrogenetic relationship between Jacupiranga carbonatites and their associated silicate rocks. Thus, an origin by direct partial melting of the mantle is considered. The isotopic compositions of the investigated silicate samples are coherent with a heterogeneously enriched subcontinental lithospheric mantle (SCLM) source of rather complex evolution. At least two metasomatic processes are constrained: (1) a first enrichment event, presumably derived from slab-related fluids introduced into the SCLM during Neoproterozoic times, as indicated by consistently old TDM ages and lamprophyre trace signatures, and (2) a Mesozoic carbonatite metasomatism episode of sub-lithospheric origin, as suggested by εNd-εHf values inside the width of the terrestrial array. The Jacupiranga parental magmas might thus derive by partial melting of distinct generations of metasomatic vein assemblages that were hybridized with garnet peridotite wall-rocks.  相似文献   

20.
Trace elements, including rare earth elements (REE), exhibit systematic variations in plutonic rocks from the Captains Bay pluton which is zoned from a narrow gabbroic rim to a core of quartz monzodiorite and granodiorite. The chemical variations parallel those in the associated Aleutian calcalkaline volcanic suite. Concentrations of Rb, Y, Zr and Ba increase as Sr and Ti decrease with progressive differentiation. Intermediate plutonic rocks are slightly enriched in light REE (La/Yb=3.45–9.22), and show increasing light REE fractionation and negative Eu anomalies (Eu/Eu*=1.03–0.584). Two border-zone gabbros have similar REE patterns but are relatively depleted in total REE and have positive Eu anomalies; indicative of their cumulate nature. Initial 87Sr/86Sr ratios in 8 samples (0.70299 to 0.70377) are comparable to those of volcanic rocks throughout the arc and suggest a mantle source for the magmas. Oxygen isotopic ratios indicate that many of the intermediate plutonic rocks have undergone oxygen isotopic exchange with large volumes of meteoric water during the late stages of crystallization; however no trace element or Sr isotopic alteration is evident.Major and trace element variations are consistent with a model of inward fractional crystallization of a parental high-alumina basaltic magma at low pressures (6 kb). Least-squares approximations and trace element fractionation calculations suggest that differentiation in the plutonic suite was initially controlled by the removal of calcic plagioclase, lesser pyroxene, olivine and Fe-Ti oxides but that with increasing differentiation and water fugacity the removal of sub-equal amounts of sodic plagioclase and hornblende with lesser Fe-Ti oxides effectively drove residual liquids toward dacitic compositions. Major and trace element compositions of aplites which intrude the pluton are not adequately explained by fractional crystallization. They may represent partial melts derived from the island arc crust. Similarities in Sr isotopes, chemical compositions and differentiation trends between the plutonic series and some Aleutian volcanic suites indicates that shallow-level fractional crystallization is a viable mechanism for generating the Aleutian calcalkaline rock series.LDGO Contribution no. 2964  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号