首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peatland‐inhabiting testate amoebae are sensitive indicators of substrate‐moisture conditions and have increasingly been used in palaeohydrological studies. However, to improve accuracy of testate‐amoeba‐based hydrological inferences, baseline ecological data on rare taxa, a larger geographic network of calibration sites, and incorporation of long‐term estimates of water‐table depth are needed. Species–environment relationships at 369 sites from 31 peatlands in eastern North America were investigated. Long‐term estimates of water‐table depth were obtained using the method of polyvinyl (PVC) tape‐discolouration. Transfer functions were developed using a variety of models, and validated through jackknifing techniques and with an independent dataset where water‐table depths were directly measured throughout the growing season. Results indicate that mean annual water‐table depth can be inferred from testate amoeba assemblages with a mean error of 6 to 8 cm, although there is a slight systematic bias. All transfer function models performed similarly and produced similar reconstructions on a fossil sequence. In a preliminary effort towards development of a comprehensive North American calibration dataset, data from this study were combined with previous studies in Michigan and the Rocky Mountains (n = 650). This combined dataset had slightly larger mean errors of prediction (8–9 cm) but includes data for several rare taxa. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Niinemets, E., Pensa, M. & Charman, D. J. 2010: Analysis of fossil testate amoebae in Selisoo Bog, Estonia: local variability and implications for palaeoecological reconstructions in peatlands. Boreas, 10.1111/j.1502‐3885.2010.00188.x. ISSN 0300‐9483. Local variability in decadal water‐table changes on an ombrotrophic peatland was explored using testate amoebae analysis of near‐surface peats in an Estonian raised bog. The distribution of testate amoebae assemblages was studied along the gradient from hummock to hollow in the upper 30‐cm layer of peat. As expected, testate amoebae assemblages in different micro‐ecotypes from hummock to hollow, even as close as 10 m apart, are distinctly different. Past water‐table change was reconstructed by applying a transfer function based on modern samples from throughout Europe. Results show a decline in water level from the mid‐late 20th century on Selisoo bog in all profiles from the different micro‐ecotypes. However, the absolute water‐table depths and amplitudes of fluctuations vary between reconstructions from different sampling micro‐ecotypes. Cores were correlated using changes in non‐mire pollen concentrations down‐core, but it was not possible to correlate minor changes in water‐table owing to non‐contiguous sampling and variable accumulation rates. We conclude that different microtopes show the same decadal trends in relative water‐table change but that the absolute magnitude of change may be more variable locally. It is important that reconstructed palaeohydrological changes in bogs consider changes in bog micro‐ecotypes, and their variation over time, as this may alter the sensitivity of an individual record to drivers such as climate change. Comparison and compilation of data from parallel cores from different micro‐ecotypes and/or different sites are likely to provide more robust reconstructions.  相似文献   

3.
We present a record of peatland development in relation to climate changes and human activities from the Palomaa mire, a remote site in northern Finland. We used fine‐resolution and continuous sampling to analyse several proxies including pollen (for vegetation on and around the mire), testate amoebae (TA; for mire‐wetness changes), oxygen and carbon isotopes from Sphagnum cellulose (δ18O and δ13C; for humidity and temperature changes), peat‐accumulation rates and peat‐colour changes. In spite of an excellent accumulation model (30 14C dates and estimated standard deviation of sample ages <1 year in the most recent part), the potential to determine cause–effect (or lead–lag) relationships between environmental changes and biotic responses is limited by proxy‐specific incorporation processes below the actively growing Sphagnum surface. Nevertheless, what emerges is that mire development was closely related to water‐table changes rather than to summer temperature and that water‐table decreases were associated with increasing peat‐accumulation rates and more abundant mire vegetation. A rapid fen‐to‐bog transition occurred within a few years around AD 1960 when the water table decreased beyond the historical minimum, supporting the notion that mires can rapidly shift into bogs in response to allogenic factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
长白山区泥炭地现代有壳变形虫环境意义探讨   总被引:4,自引:2,他引:2       下载免费PDF全文
有壳变形虫(testate amoebae)是一种新的具有潜力的环境变化生物指标。对采集自长白山区哈泥(42°12′50″N,126°31′05″E)、金川(42°20′47″N,126°21′35″E)、赤池(42°03′16″N,128°03′22″E)和圆池(42°01′55″N,128°25′58″E)等4个泥炭地不同生境的75个有壳变形虫样品,采用冗余分析方法(RDA)研究有壳变形虫种类组合变化与7个环境变量的关系,所有采样点均以泥炭藓(Sphagnum)为优势植被。结果表明水位埋深(depth to water table),pH值和泥炭湿度是影响长白山区泥炭地有壳变形虫种类变化的主要环境因子,显著性检验达到p<0.001的水平。这一结果与国外其他地区的研究结果相一致,这3个环境因子可以作为目标变量进行有壳变形虫-环境因子转换函数的构建。  相似文献   

5.
Quantitative reconstruction of changes in mire surface wetness has been used to reconstruct proxy climate from an upland ombrotrophic blanket mire on the North York Moors in northeast England (May Moss). Testate amoebae, plant macrofossil and humification analyses were carried out for six peat profiles. Transfer functions are used to generate estimates of water table levels from the testate amoebae stratigraphy, which complement the semi‐quantitative indications of changing surface wetness provided by plant macrofossil and humification analysis. 14C dates provide the chronology for the stratigraphy. Differences were encountered between AMS 14C dates on pure Sphagnum remains and radiometric dates on bulk peat from the same horizon, which perhaps arise from the heterogeneity of peat. Replicate palaeoecological analysis of adjacent cores identifies consistency within testate amoebae and plant macrofossil stratigraphies, and reveals a strong agreement between the water table level proxies. The record of hydrological changes at sites across May Moss are in synchrony, and so climate change is the most likely cause of the moisture fluctuations. Changes to a wetter or cooler climate were identified cal. ad 260–540, ca. ad 550–650, cal. ad 670–980, ca. ad 1350–1450, cal. ad 1400–1620 and ca. ad 1700–1800. Periods with a drier or warmer climate precede all of these wet shifts, with particularly dry periods between cal. ad 650–860 and 690–980 and between cal. ad 1290–1410 and 1400–1620. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In general, mires develop by autogenic succession from more groundwater‐fed to more rainwater‐fed. This study from a calcareous mire in the West Carpathians (Slovakia) describes a similar development in the Early Holocene, followed by a reverse development in the Middle and Late Holocene. Pollen, macrofossil and testate amoeba analyses show that the site started as a minerotrophic open fen woodland. After 10 700 cal a BP autogenic succession led to the accumulation of at least 1 m of Sphagnum fuscum peat. Around 9000 cal a BP, as climate could no longer sustain a stable water regime, the bog desiccated and a fire broke out. The fire removed part of the peat layer and as a consequence relative water levels rose, leading to the establishment of a wet minerotrophic swamp carr with Thelypteris palustris, Equisetum sp. and Alnus sp. with extremely slow peat accumulation. After 600 cal a BP, rapid peat accumulation with calcareous tufa formation resumed as a result of anthropogenic deforestation and hydrological changes in the catchment and resulting increased groundwater discharge. At present the mire still hosts a wealth of relict and endangered plant and animal species typical of calcareous fens and fen meadows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Andersson, S. & Schoning, K. 2010: Surface wetness and mire development during the late Holocene in central Sweden. Boreas, Vol. 39, pp. 749–760. 10.1111/j.1502‐3885.2010.00157.x. ISSN 0300‐9483. Late Holocene mire development and surface wetness changes have been studied in a small mixed mire located in central Sweden. Today the mire is characterized by a mainly ombrotrophic centre dominated by Sphagnum mosses, with Carex content increasing towards the more minerotrophic mire margins. Two peat sequences extracted from the central ombrotrophic part were investigated for stratigraphy, humification, testate amoebae analysis, C/N ratio and δ13C and δ15N stable isotopes. Three main stages of mire development are identified, with the first stage, between c. 4200 and 2600 cal. yr BP, characterized by water‐logged conditions, suggesting a minerotrophic fen stage. The second stage, between c. 2600 and 1000 cal. yr BP, is characterized by more ombrotrophic conditions and Sphagnum‐dominated vegetation. The onset of the prominent change at c. 2600 cal. yr BP could have been initiated by climate change coincident with a change in solar activity. The last stage, between c. 1000 and 50 cal. yr BP, is dominated by more ombrotrophic conditions, suggesting increased precipitation. This study shows that the response of hydrological proxies in a mixed mire during its development towards more ombrotrophic conditions might result in conflicting results, a finding that needs to be considered in palaeoenvironmental reconstructions from mires that change between ombrotrophic and minerotrophic settings.  相似文献   

8.
开展湿地的生态监测研究是理解当今气候变化背景下湿地的生态响应、动态演化和生态服务功能变化的有效途径,也是湿地保护、科学管理、合理规划和生态恢复的内在需求.以我国鄂西地区广泛分布的典型亚高山泥炭湿地为研究地点,以在湿地中大量生活且对环境变化敏感的环境指示生物——有壳变形虫为研究对象,采用了一种较新的泥炭湿地水位长期定点监测方法——"PVC印迹法"监测湿地水位的长期变化,调查了有壳变形虫的生物多样性、群落组合特征及其与水位等主要环境因子的响应关系,共记录到有壳变形虫27种和类群(type),隶属14个属.对有壳变形虫的群落组成与环境因子的关系排序分析显示,泥炭湿地的水位是有壳变形虫群落组成的主控环境因子,构建了有壳变形虫属种与水位的转换函数,该函数具有较好的预测和推导能力(R2=0.62),为该地区泥炭湿地的古水位重建提供了现代过程的数据支持.   相似文献   

9.
The mid to late‐Holocene climates of most of Scotland have been reconstructed from seven peat bogs located across north–south and east–west geographical and climatological gradients. The main techniques used for palaeoclimatic reconstruction were plant macrofossil, colorimetric humification, and testate amoebae analyses, which were supported by a radiocarbon‐based chronology, aided by markers such as tephra isochrons and recent rises in pine pollen and in spheroidal carbonaceous particles (SCPs). Field stratigraphy was undertaken at each site in order to show that the changes detected within the peat profiles were replicable. Proxy climate records were reconstructed using detrended correspondence analysis (DCA) of the plant macrofossil data and a mean water table depth transfer function on the testate amoebae data. These reconstructions, coupled with the humification data, were standardised for each site and used to produce a composite record of bog surface wetness (BSW) from each site. The results show coherent wet and dry phases over the last 5000 years and suggest regional differences in climate across Scotland, specifically between northern and southern Scotland. Distinct climatic cycles are identified, all of which record a millennial‐scale periodicity which can be correlated with previously identified marine and ice core Holocene cycles. The key role of the macrofossil remains of Sphagnum imbricatum, a taxon now extinct on many sites, is discussed in relation to the identified climatic shifts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a Holocene pollen record from an ombrotrophic bog in Southland, New Zealand, together with multiproxy data (testate amoebae, peat humification and plant macrofossils) from the same core to establish an independent semiquantitative record of peatland surface moisture. Linkages between reconstructed peatland surface moisture and regional forest composition are investigated using redundancy analysis of the forest pollen data constrained with predicted bog water‐table depths. Over 32% of the pollen data variance can be explained by surface moisture changes in the bog, suggesting a common cause of water‐table and regional vegetation change. Water tables were higher during the early to mid‐Holocene when the forest was dominated by podocarp taxa. Water tables lowered after about 3300 cal. yr BP coevally with the expansion of Nothofagus species, culminating with the dominance of Nothofagus subgenus Fuscospora in the past 1200 cal. yr BP. This is in apparent opposition to the warm/dry to cool/wet trend suggested by subjective interpretation of pollen data alone, from this and other studies. We suggest that during the late Holocene, drier summers associated with shifts in solar insolation caused reduced surface wetness and summer humidity, which together with a trend to cooler winters, apparently favoured the regeneration of Nothofagus species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Ombrotrophic mires can provide records of palaeoclimate over the mid- to late- Holocene in several areas of the world. Their potential is currently partly limited by difficulties with scaling indices based on plant macrofossils and humification, and the need to account for the internal variability of the mire system. This paper explores the use of testate amoebae analysis as a third technique and assesses the minimum within-site variability by comparing results from two closely spaced cores. Reconstruction of surface wetness changes was carried out on cores from the centre of an intermediate raised-blanket mire, Coom Rigg Moss, Northumberland, by analysis of testate amoebae, plant macrofossils and humification. Surface wetness changes were expressed as mean annual water table changes inferred from testate amoebae assemblages, two separate indices based on plant macrofossils and percentage transmission of humification extracts. Comparisons between the proxies suggest good agreement of general trends in Sphagnum peats but some differences in monocot and ericaceous peats. The magnitude of surface wetness changes also differs within Sphagnum peats. The records from the separate cores converge over time and replicability between cores is best in the last 1000 yr. Changes over this period are similar to those shown by estimates based on documentary sources. Good agreement is obtained between a normalised plant macrofossil index and normalised reconstructed water-table values and it is suggested that this approach could form the basis for improved composite, multiproxy records from peatlands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Numerous palaeoecological studies have used testate amoeba analysis to reconstruct Holocene hydrological change in peatlands, and thereby past climatic change. Current studies have been almost exclusively restricted to ombrotrophic bogs and the period since the fen–bog transition. Although the critical link between peatland surface wetness and climate is less direct in minerotrophic peatlands, such records may still be of value where there are few others, particularly if multiple records can be derived and inter‐compared. Expanding the temporal and spatial scope of testate amoeba‐based palaeohydrology to minerotrophic peatlands requires studies to establish the primacy of hydrology and the efficacy of transfer functions across a range of sites. This study analyses testate amoeba data from wetlands spanning the trophic gradient in the eastern Mediterranean region. Results demonstrate that different types of wetlands have distinctly different amoeba communities, but hydrology remains the most important environmental control (despite water table depth being measured at different times for different sites). Interestingly, Zn and Fe emerge as significant environmental variables in a subset of sites with geochemical data. Testate amoeba–hydrology transfer functions perform well in cross‐validation but frequently perform poorly when applied to other sites, particularly with sites of a different nutrient status. It may be valid to use testate amoebae to reconstruct hydrological change from minerotrophic peatlands with an applicable transfer function; however, it may not be appropriate to use testate amoebae to reconstruct hydrological change through periods of ecosystem evolution, particularly the fen–bog transition. In practice, the preservation of amoeba shells is likely to be a key problem for palaeoecological reconstruction from fens. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Amesbury, M. J., Barber, K. E. & Hughes, P. D. M. 2010: The methodological basis for fine‐resolution, multi‐proxy reconstructions of ombrotrophic peat bog surface wetness. Boreas, 10.1111/j.1502‐3885.2010.00152.x. ISSN 0300‐9483. The need for Holocene peat‐based palaeoclimatic records of increased temporal resolution has been widely identified in recent research. The often rapid growth rates of ombrotrophic bogs, when combined with fine‐resolution (i.e. millimetre‐scale) sampling, provide an as yet largely unexploited potential to derive sub‐decadal palaeoclimatic data from this proxy‐archive. However, multi‐proxy, fine‐resolution analyses require changes to standard methodologies, and the application of sampling techniques that are new to peat‐based palaeoclimate research. A peat sampler was custom‐built to allow precise and replicable millimetre‐scale subsampling. Subsequent methodological testing revealed that, irrespective of sample thickness (i.e. resolution), halving the standard sample volume used for plant macrofossil (from 4 cm3 to 2 cm3) and testate amoebae (from 2 cm3 to 1 cm3) analyses and the sample weight used for peat humification analysis (from 0.2 g to 0.1 g dried peat) did not affect the interpretation of the results. A contiguous 1‐mm sampling resolution for plant macrofossil analysis was also tested, but it was found that contiguous 5‐mm samples provided a more reliable background record to fine‐resolution testate amoebae and peat humification analyses. Based on these findings, a standardized and systematic methodological approach was developed, using the custom‐built peat slicer to take millimetre‐scale samples that provide enough sample material for both testate amoebae and peat humification analyses to be performed at 1‐mm resolution. This approach will facilitate the testing of the palaeoclimatic reliability of multi‐proxy, fine‐resolution peat‐based records.  相似文献   

14.
Palaeoenvironmental reconstructions from peat are strongly focused on ombrotrophic mires, but this study demonstrates that eutrophic mires can also be used. A multi-proxy approach was applied to a eutrophic mire on a floodplain terrace in the southern taiga of West Siberia. The results of the reconstruction were considered in the wide geographic context of the surrounding regions, including Siberia and Central Asia. Different palaeoecological proxies (analysis of plant macrofossils, testate amoebae, oribatid mites, molluscs, peat humification, ash content and spectral characteristics of humic acids) were used in this study. The results of different proxies showed a high level of consistency among themselves, which allowed for a robust interpretation of Holocene mire development. Throughout the ~7800 years history of the mire, there was a high level of surface wetness. The presence of mineral matter in the peat between 7800 and 5100 cal. a BP indicates regular flooding caused by the intensive fluvial activity, apparently resulting from increased precipitation. This was followed by a trend towards a gradual decrease in surface wetness from conditions of high surface moisture (stagnant water) between 5100 and 3000 cal. a BP to present day conditions of moderate surface moisture with a water table slightly below the mire surface. This pattern is consistent with the well-documented long-term trend from palaeoecological records throughout the taiga and arctic zones in West Siberia and central arid Asia. Our data further support the idea that the westerlies were the dominant driver of climate for the southern taiga of West Siberia during the Middle to Late Holocene.  相似文献   

15.
Proxy climate data can be obtained from reconstructions of hydrological changes on ombrotrophic (rain‐fed) peatlands using biological indicators, such as testate amoebae. Reconstructions are based on transfer functions, relating modern assemblage composition to water table and moisture content, applied to fossil sequences. Existing transfer functions in Europe and elsewhere are limited geographically and there are often problems with missing or poor analogues. This paper presents a new palaeohydrological transfer function based on sampling raised mires from across Europe. Relationships between assemblages and hydrological variables are described using ordination analyses. Transfer functions are developed for depth to water table (n = 119) and moisture content (n = 132) with root mean squared errors (RMSEP) of 5.6 cm and 2.7% respectively. Both transfer functions have an r2 of 0.71, based on ‘leave one out’ cross‐validation. Comparisons with an existing transfer function for Britain show that the European transfer function performs well in inferring measured water tables in Britain but that the British data cannot be used to infer water tables for other European sites with confidence. Several of the key missing and poor analogue taxa problems encountered in previous transfer functions are solved. The new transfer function will be an important tool in developing peat‐based palaeoclimatic reconstructions for European sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Radiocarbon-dating and analyses of fossil testate amoebae (Protozoa) have established changes in soil moisture conditions on the developing surface of a Sphagnum -dominated peatland near Emo in northwestern Ontario.
The distribution and composition of modern testate amoebae communities were studied from peatlands in the region of Ontario and Minnesota as a guide to interpreting fossil assemblages. Although the core spans all of the Holocene, fossil testate amoebae were recovered only from the part post-dating 6500 BP. Earliest testate amoebae assemblages associated with bryophytic and cyperaceous-rich fen peat are dominated by species in the genera Cyclopyxis and Centropyxis . By 5000 BP, Amphitrema Jraaum, Assulina muscorum, Heleopera sphugni and Hyalosphenia subjaoa become important species as Sphagnum-rich peat accumulated at the site. Present-day microtopographic differentiation probably developed during historic time when the site became progressively drier, as indicated by a change of Nebela griseola, N. militaris and Trigonopyxis arcula . Although it is possible to derive quantitative estimates of changing soil moisture conditions from testate amoebae, care should be taken in interpreting results, particularly from non-Sphagnum-rich peats, until more is learned about the distribution and ecology of modern faunas.  相似文献   

17.
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.  相似文献   

18.
Little is known about the century‐scale response of water levels in inland estuaries to sea‐level change and human modifications to estuarine morphology. This study explored the ability of using testate amoebae (Protozoa, Rhizopoda) from sediments of a freshwater tidal marsh as indicators of water level in an inland estuary. The hypothesis was that modern testate amoeba assemblages change with surface elevation (approximately the duration of tidal flooding) within a freshwater tidal marsh. Variation in testate amoeba assemblages in relation to multiple environmental variables and sediment characteristics was studied through redundancy analysis. This demonstrated that a significant part of the variation in modern testate amoeba assemblages could be explained by flooding frequency, surface elevation, organic content and particle size of the soil. Transfer functions, partial least squares and weighted average regressions were made to show that testate amoebae can be used for reconstruction of water level (with an accuracy of 0.05 Normalized Elevation). A preliminary test of application of the transfer function to palaeo testate amoeba assemblages showed promising results. Testate amoebae from a freshwater tidal marsh provide a potentially powerful new tool for estuarine water‐level reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
《Quaternary Science Reviews》2004,23(1-2):137-143
Peatland surface wetness records provide long Holocene palaeoclimate reconstructions at 101–102 year resolution. They reflect changes in water balance but the relative strength of precipitation and temperature signals are not known. In common with other non-annually resolved records, there has been no testing of the reconstructions against instrumental climate data. In this paper high-resolution records of palaeohydrological change reconstructed from testate amoebae analysis are used to examine critically the relationships between reconstructed water table change, instrumental water table and climate data. A 200-year record of reconstructed water table from northern England shows that the strongest control on reconstructed mean annual water table change is summer precipitation, with summer temperature becoming more important over longer time periods. A 50-year record from Estonia shows that both measured and reconstructed water table records are strongly correlated with summer precipitation. Summer temperature is also correlated with reconstructed water table. We conclude that peatland surface wetness records should be interpreted as primarily reflecting summer precipitation variability, with summer temperature increasingly important in more continental settings.  相似文献   

20.
Sillasoo, Ü., Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J. R. G., Toms, P., Newberry, J., Chambers, F M. & Karofeld, E. 2007 (January): Peat multi‐proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas, Vol. 36, pp. 20–37. Oslo. ISSN 0300–9483. As part of a wider project on European climate change over the past 4500 years, a 4.5‐m peat core was taken from a lawn microform on Männikjärve bog, Estonia. Several methods were used to yield proxy‐climate data: (i) a quadrat and leaf‐count method for plant macrofossil data, (ii) testate amoebae analysis, and (iii) colorimetric determination of peat humification. These data are provided with an exceptionally high resolution and precise chronology. Changes in bog surface wetness were inferred using Detrended Correspondence Analysis (DCA) and zonation of macrofossil data, particularly concerning the occurrence of Sphagnum balticum, and a transfer function for water‐table depth for testate amoebae data. Based on the results, periods of high bog surface wetness appear to have occurred at c. 3100,3010–2990,2300, 1750–1610, 1510, 1410, 1110, 540 and 310 cal. yr BP, during four longer periods between c. 3170 and 2850 cal. yr BP, 2450 and 2000 cal. yr BP, 1770 and 1530 cal. yr BP and in the period from 880 cal. yr BP until the present. In the period between 1770 and 1530 cal. yr BP, the extension or initiation of a hollow microtope occurred, which corresponds with other research results from Mannikjarve bog. This and other changes towards increasing bog surface wetness may be the responses to colder temperatures and the predominance of a more continental climate in the region, which favoured the development of bog micro‐depressions and a complex bog microtopography. Located in the border zone of oceanic and continental climatic sectors, in an area almost without land uplift, this study site may provide valuable information about changes in palaeohydrological and palaeoclimatological conditions in the northern parts of the eastern Baltic Sea region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号