首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Fossil beetles from a last glacial landslide‐generated lake‐forest sequence aged 33 480–34 410 cal. yr BP (late Marine Isotope Stage 3 (MIS 3)) are identified from the Waitotara Valley in South Taranaki, North Island, New Zealand. The stratigraphy indicates that the landslide caused changes to local hydrology, resulting in the formation of a lake‐swamp environment and subsequent transition to forest. Fossil leaves suggest a forest dominated by Nothofagus menziesii, and radiocarbon ages indicate the site was forested for around 4000 yr. A fossil beetle‐based temperature estimate using the maximum likelihood envelope method indicates the climate was cooler than present day. The distributions of the fossil beetle taxa are examined and compared with the modern ecological patterns. The fossil fauna is very typical of a modern‐day Nelson (northern South Island) fauna. None of the beetle species is present in the modern South Taranaki fauna and many taxa such as Platypus caviceps, Alema paradoxa, Rhyzobius consors, Syrphetodes ater, Cyclaxyra impressa and species of Grynoma and Pycnomerus are now absent from part or all of the lower North Island. This is important because the lower North Island is currently an area of low diversity and endemism and these results suggest this biogeographical pattern stems from the last glaciation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A 12 000 to 4000 yr BP pollen and tephra-bearing profile from Auckland, New Zealand, provides insights into the vegetation history and evidence for early Holocene volcanic activity in this area centred on the Mount Wellington basaltic volcano. Possibly 500 yr separated initial scoriaceous ash deposition (ca. 9500 yr ago) and subsequent major lava flows (ca. 9000 yr ago) from Mount Wellington. The local vegelation, topography, and drainage patterns were substantially modified during this time, and damming by the lava flows resulted in the formation of Lake Waiatarua in a shallow valley head ca. 9000 yr ago. Diatom evidence indicates that this lake was initially deep (> 5 m) but was shallowing around 4000 yr ago. In contrast to the Mount Wellington eruptions, tephra deposition resulting from distant rhyolitic volcanic activity of the central North Island and Mayor Island has had little effect on the Auckland vegetation during this time interval (12 000–4000 yr ago). Between ca. 12 000 and 10 000 yr ago, conifer-angiosperm forest was the predominant vegetation cover on Auckland Isthmus, but during the early Holocene, forest dominated by Metrosideros expanded, probably on to fresh volcanic surfaces resulting from the Mount Wellington eruptions. At this time, swamp forest communities developed in Waiatarua valley basin, and included species indicative of moist, mild, relatively frost-free climates. Some taxa show histories consistent with other records from the northern New Zealand region, including the rise of Ascarina lucida ca. 11 000 to 9000 yr ago, and its subsequent decline, and the expansion of Agathis australis (kauri) forest communities from ca. 6000 yr ago. Taken together the history of local and regional vegetation points to a mild, moist and weakly seasonal early Holocene climate, which subsequently became drier with greater seasonal temperature extremes.  相似文献   

4.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A series of 18 fossil beetle assemblages are used to reconstruct the paleoenvironment of the northwest West Coast, New Zealand, over the period of the last interstadial-stadial transition (ca. 37,000-21,300 cal yr BP). The samples were recovered from an in-filled hollow within a dune field ca. 9 km south west of Westport (41°47′S, 171°30′E). This fossil beetle reconstruction is compared to an existing palynological reconstruction from the same site. The beetle assemblages indicate an environment of marshy shrubland interspersed with closed canopy coastal vegetation prior to glacial onset, and a mosaic of closed canopy patches and open tussock grassland during full glacial conditions. These interpretations, contrast with the palynologically based interpretation which indicates subalpine shrubland prior to glacial onset and widespread grassland with little woody vegetation during the period of maximum glacial cooling. This study is consistent with other non-pollen studies in New Zealand and indicates that the palynological interpretation of the paleoenvironment of the Westport region downplays the importance of closed canopy vegetation in the area during the transition from interstadial to full glacial (stadial) conditions. It challenges the interpretation of open vegetation at low elevations during glacial periods from pollen studies.  相似文献   

6.
A Holocene record of pollen, macrofossils, testate amoebae and peat humification is presented from a small montane bog. Sediment accumulation began before 9000 yr BP, but peat growth not until ca. 7000 BP. From 12 000 to 7000 yr BP, a shrub–grassland dominated under a dry climate, with increasing conifer forest and tall scrub from ca. 9600 yr BP. At 7000 yr BP a dense montane–subalpine low conifer forest established under a moist, cool climatic regime. Between 7000 and 700 yr BP the bog surface was shrubby, tending to be dry but with highly variable surface wetness. The catchment was affected by major fire at least four times between 4000 and 1000 yr BP. Both fire and bog surface wetness may have been linked to ENSO-caused variations in rainfall. Cooler, cloudier winters and disturbance by fire promoted the expansion of the broadleaf tree Nothofagus menziesii between 4000 yr BP and 1300 yr BP at the expense of the previous conifer forest–scrub vegetation. Polynesian fires (ca. 700 yr BP) reduced the vegetation to tussock grassland and bracken. Deforestation did not markedly affect the hydrology of the site. European pastoralism since ad 1860 has increased run-off and rising water tables in the bog have led to a Sphagnum-dominated cover. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
A pollen diagram from Lago di Martignano, a maar lake in central Italy, provides an 11000-year record of vegetation and environment change. The earliest pollen spectra are dominated by Artemisia and Gramineae, representing late glacial steppe vegetation typical of the Mediterranean region. Broad-leaved forests were established by ca. 11 000 yr BP. Although Quercus initially dominated their canopy, a wide range of other mesophyllous trees were also present. Pollen values for sclerophyllous tree and shrub taxa characteristic of Mediterranean woodlands and scrub are initially low (<10%). After ca. 7000 yr BP, however, they begin to increase and rise to a peak of >40% of total land pollen at ca. 6700 yr BP, with Olea europaea the single most abundant taxon. Human influence upon the vegetation only becomes significant somewhat after this peak, with progressive clearance of woodland and expansion of herbaceous communities. Castanea sativa and luglans regia pollen is recorded consistently from the beginning of the rise in pollen values for taxa characteristic of Mediterranean scrub communities. Pollen values for arable crops increase progressively after ca. 5500 yr BP, following the peak pollen values for taxa characteristic of Mediterranean scrub vegetation. Late glacial and Holocene climate changes have been complex in this region, with the present character of the climate developing only during the last millennium. Rates of change of pollen spectra peak during this period.  相似文献   

8.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The elm decline of 5000 14C yr ago has been the most widely discussed phenomenon in post‐glacial vegetation history. This pan‐European reduction of elm populations, echoed in the decimation of elmwoods in Europe during the twentieth century, has attracted a series of interrelated hypotheses involving climate change, human activity, disease and soil deterioration. The elm bark beetle (Scolytus scolytus L.) is an essential component of disease explanations. We present evidence for the presence of the beetle over a prolonged period (ca. 7950–4910 yr BP [8800–5660 cal. yr BP]) from a lowland raised mire deposit in northeast Scotland, with its final appearance at this site, and the first and only appearance in another mire of a single scolytid find, around the time of the elm decline. The subfossil S. scolytus finds are not only the first from Scotland, but they also represent the most comprehensive sequence of finds anywhere. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Three pollen and charcoal records from three lakes lying at 3400 m elevation in southern Peru provided a record of landscape change spanning the last ca.18 000 cal. a BP. The tree line lay close to the site between ca. 16 000 and 12 000 cal. a BP, with Polylepis woodlands growing near the lakes. Progressively drying conditions led to increased fire after 12 000 cal. a BP, coinciding with a decline in Polylepis cover and Andean forest relicts as puna grasslands expanded. A strong decrease in the rate of sediment deposition between ca. 12 000 and ca. 4400 cal. a BP was interpreted to indicate the presence of sedimentary hiatuses. With the return of wet conditions after 4400 cal. a BP, forests did not reassemble around the lakes. Instead, fire‐maintained grasslands dominated the landscape. Humans probably induced the intensified fire activity during the late Holocene and thereby deflected local successions. The modern fragmented landscape, with Polylepsis woodlands existing in fire‐resistant pockets above the general limit of the Andean tree line, resulted from the intensification of human land use practices during the last 4400 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Two pollen records from La Chonta bog (2310 m altitude) and one pollen record of a soil profile (2430 m altitude) at a short distance from the bog permit the reconstruction of the vegetational history and climatic sequence of probably the last ca. 80 000 yr of the Cordillera de Talamanca, Costa Rica. The three pollen records can be correlated on the basis of three radiocarbon-dated horizons (> 39 900 yr BP, 34 850 yr BP and 1390 yr BP) and palynostratigraphy. Pollen concentration data provide indirect time control between radiocarbon-dated horizons of the La Chonta 2 core. During the Early Glacial successive fluctuations of the upper forest line occurred between ca. 2300 m and 2800 m altitude and the bog is alternately situated close to the subalpine rainforest belt and in the uppermontane rainforest belt. During the Pleniglacial (ca. 50 000-13 000 yr BP) the forest line fell to ca. 2000 m altitude and paramo vegetation surrounded the La Chonta site. During the Late Glacial the forest line shifted rapidly in ca. 270 yr to 2700–2800 m altitude and the lake became surrounded by Quercus-dominated upper montane rainforest during a period of ca. 1655 yr. A distinct climate cooling (by 2–2.5°C) followed during ca. 580 yr and the upper forest line dropped to ca. 2400 m altitude. This temperature rebound is probably equivalent to the Younger Dryas event. In the depression extensive Alnus carr and swamp vegetation developed. Finally, during the Holocene, the forest line shifted to 3300–3500 m elevation and the lower montane rainforest reached close to ca. 2300 m altitude. In the later part of the Holocene subparamo scrub with Hypericum, Puya, Compositae, Escallonia and Ericaceae largely replaced Alnus carr and the regional and local vegetation closely resembles the presentday composition. During the Last Glacial to Holocene transition a shift of the upper forest line of ca. 1400 m is inferred, corresponding to a glacial temperature depression at 2300 m altitude of ca. 8°C.  相似文献   

12.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

13.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.  相似文献   

15.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The absence of human occupation sites in southeastern Brazil during the mid Holocene has been referred to as the 'Archaic Gap' (8970–1940 cal. a BP) and is predicted to have resulted from increased aridity. A ca. 14 000 cal. a pollen history from two well‐dated lake sediment cores located within the archeological district of Lagoa Santa, in the State of Minas Gerais, southeastern Brazil, was used to test this hypothesis. Our analyses indicated that the present cerrado and tropical semi‐deciduous forest mosaic persisted throughout the mid Holocene, until ca. 5500 cal. a BP, and the Lagoa Santa region did not experience especially dry conditions during the Holocene period. The early Holocene pollen spectra contained an assemblage of cold‐adapted taxa such as Podocarpus, Myrsine and Araucaria, co‐occurring with taxa from cerrado, e.g. Caryocar. A replacement of cold taxa by the modern cerrado–semi‐deciduous forest vegetation took place progressively, but appears to have been completed by the mid Holocene. No evidence of sustained drought was found in sedimentation or forest composition, nor any prolonged dry event in the study region. Holocene dryness as an explanation for the abandonment of Lagoa Santa region is not supported by the palynological analyses conducted in this study. Rather it is suggested that unpredictable climate may have underlain that abandonment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We examine pollen, macrofossils and sedimentological proxies from the Ridge Site, an 18‐m sequence of glacial and non‐glacial sediments exposed along the bank of the Ridge River in the southern Hudson Bay Lowlands (HBL), Canada. As the HBL is located in the previously glaciated region of North America, palaeorecords from this region have important implications for understanding ice‐sheet palaeogeography and climate for the late Pleistocene. Two diamicton units were interpreted as subglacial till deposited by a glacier flowing toward the south‐southwest (lower diamicton) and west‐southwest (upper diamicton), respectively. Confined between these tills is a 6‐m non‐glacial unit, constrained to Marine Isotope Stage 3 (MIS 3; c. 57 000 to c. 29 000 a BP) by three radiocarbon dates. Quantitative analyses of the pollen record (dominated by Sphagnum, Cyperaceae, Pinus, Picea, Salix, Alnus and Betula) suggest that average summer temperature (June, July, August) was 14.6±1.51 °C, which is similar to that of the present day at the site. Total annual precipitation was 527±170 mm as compared to 705 mm present‐day. The macrofossil record confirmed the local presence of Betula, Salix and conifers. Our results, in combination with other records from the periphery of the Laurentide Ice Sheet, suggest that vast boreal forest‐type vegetation, along with a drier interstadial climate, existed in the region during MIS 3. We also compare pollen‐derived palaeoclimate reconstructions from the Ridge Site with reconstructions from a previously published site along the Nottaway River, HBL, which was dated to MIS 5a–d (c. 109 000 to c. 82 000 a BP). This comparison suggests that, with additional data, it may be possible to differentiate MIS 3 and MIS 5 deposits in the HBL on the basis of relative continentality, with MIS 3 characterized by lower total annual precipitation, and MIS 5 by values similar or greater than present‐day.  相似文献   

18.
Fossil beetles and pollen were examined from an intermorainal bog at Puerto Edén, Isla Wellington, Chile (latitude 49°08'S, longitude 74°25'W). Wood from near the base of the section has an age of 12 960 ± 150 yr BP. Occurrence of flightless beetle species in the basal peat sample is evidence that some members of the biota survived the last glacial maximum in refugia. The assumption that the Chilean Channels were entirely ice-covered is incorrect. Plants and insects that invaded the deglaciated terrain were those of an Empetrum heathland in which patches of Nothofagus forest were restricted to sheltered locations. The climate supporting the heathland is inferred to have been windier and probably drier than that of the present day. From 13 000 yr BP to 9500 yr BP Nothofagus forest expanded, possibly in response to less windiness and more available moisture. Neither the fossil beetle nor pollen data support a return to significantly colder conditions between 11 000 and 10 000 yr BP at the time of the Younger Dryas Stade. From 9500 to 5500 yr BP the climate was as wet as that of the present day, based on an increased representation of the pollen of moorland plants and of aquatic beetle species. From 5500 to 3000 yr BP the climate was drier, as indicated by the expansion of Empetrum heath and the reduction in mesic habitats. From 3000 yr BP to the present-day mesic habitats dominated as the climate returned to a wetter mode. The alternatively wetter and drier episodes are attributed to latitudinal shifts in the position of storm tracks in the belt of Southern Westerlies.  相似文献   

19.
The Kenai Peninsula of south‐central Alaska is a region of high topographic diversity with a complex glacial history. The sedimentary record of two small lakes [Sunken Island (SIL; 76 m a.s.l.) in the Kenai Lowlands; Choquette (CL; 527 m a.s.l.) in the Caribou Hills upland] exemplifies the postglacial development of the conifer–hardwood forest over an elevational range there. A herb–shrub tundra was established at both sites after deglaciation. By ~10.7 ka, poplar (Populus sp.) and alder (Alnus) dominated the lowland forest, while alder with minor poplar occurred at the upland site. Lake levels lower than today occurred during the early Holocene until ~8 ka. Subsequently at SIL, the near‐modern Kenai birch (Betula kenaica) – white spruce (Picea glauca) forest maintained prominence throughout the Holocene. However, at CL, alder dominated with dwarf birch and other subshrubs; small amounts of white spruce arrived ~5.2 ka. Black spruce (Picea mariana) grew around SIL by ~4 ka, but never gained prominence at CL. Fire, a prominent agent of disturbance in the Kenai Lowlands since ~8 ka, was essentially absent at the hardwood‐dominated upland site before ~6 ka, and rare thereafter. This suggests an important link between fire and spruce in Kenai forests.  相似文献   

20.
Johnston's Gum Hole provides a discontinuous pollen record commencing late in Marine Isotope Stage 5 (MIS 5). In combination with other published records from the region, the Aupouri Peninsula is reconstructed to have been continuously forested through much of the last glacial cycle with the oscillation of Agathis‐ and Nothofagus‐dominated forest corresponding to stadials and interstadials, respectively. A northward latitudinal expansion of beech forest to 35° S is demonstrated. Kauri demise at the close of MIS 5 appears to have been due to flooding of the site. The elimination of kauri in MIS 3 was also associated with rewetting of the substrate, but could have been a more catastrophic event. The presence of both MIS 5 and MIS 3 kauri wood at the site suggests that other Aupouri peat swamps may also preserve timber of these ages, and demonstrate the potential of this area for providing MIS 3 and MIS 5 tree ring records. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号