首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

2.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

3.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

4.
Three periods of mineral growth and three generations of spiral‐shaped inclusion trails have been distinguished within folded rocks of the Qinling‐Dabie Orogen, China, using the development of three successive and differently trending sets of foliation intersection axes preserved in porphyroblasts (FIAs). This progression is revealed by the consistent relative sequence of changes in FIA trends from the core to rim of garnet porphyroblasts in samples with multiple FIAs. The first and second formed sets of FIAs trend oblique to the axial planes of macroscopic folds that dominate the outcrop pattern in this region. The porphyroblasts containing these FIAs grew prior to the development of the macroscopic folds, yet the FIAs do not change orientation across the fold hinges. The youngest formed FIAs (set 3) lie subparallel to the axial planes of these folds and the porphyroblasts containing these FIAs formed in part as the folds developed. The deformation associated with all three generations of spiral‐shaped inclusion trails in garnet porphyroblasts involved the formation of subhorizontal and subvertical foliations against porphyroblast rims accompanied by periods of garnet growth; pervasive structures have not necessarily formed in the matrix away from the porphyroblasts. The macroscopic folds are heterogeneously strained from limb to limb, doubly plunging and have moderately dipping axial planes. The consistent orientation of Set 1 FIAs indicates that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 2 did not involve rotation of the previously formed porphyroblasts. The consistent orientation of Sets 1 and 2 FIAs indicate that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 3 did not involve rotation of the previously formed porphyroblasts during folding. This requires a fold mechanism of progressive bulk inhomogeneous shortening and demonstrates that spiral‐shaped inclusion trails can form outside of shear zones.  相似文献   

5.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

6.
Porphyroblast inclusion fabrics are consistent in style and geometry across three Proterozoic metamorphic field gradients, comprising two pluton-related gradients in central Arizona and one regional gradient in northern New Mexico. Garnet crystals contain curved ‘sigmoidal’ inclusion trails. In low-grade chlorite schists, these trails can be correlated directly with matrix crenulations of an older schistosity (S1). The garnet crystals preferentially grew in crenulation hinges, but some late crenulations nucleated on existing garnet porphyroblasts. At higher grade, biotite, staurolite and andalusite porphyroblasts occur in a homogeneous S2 foliation primarily defined by matrix biotite and ilmenite. Biotite porphyroblasts have straight to sigmoidal inclusion trails that also represent the weakly folded S1 schistosity. Staurolite and andalusite contain distinctive inclusion-rich and inclusion-poor domains that represent a relict S2 differentiated crenulation cleavage. Together, the inclusion relationships document the progressive development of the S2 fabric through six stages. Garnet and biotite porphyroblasts contain stage 2 or 3 crenulations; staurolite and andalusite generally contain stage 4 crenulations, and the matrix typically contains a homogeneous stage 6 cleavage. The similarity of inclusion relationships across spatially and temporally distinct metamorphic field gradients of widely differing scales suggests a fundamental link between metamorphism and deformation. Three end-member relationships may be involved: (1) tectonic linkages, where similar P-T-time histories and similar bulk compositions combine to produce similar metamorphic and structural signatures; (2) deformation-controlled linkages, where certain microstructures, particularly crenulation hinges, are favourable environments for the nucleation and/or growth of porphyroblasts; and (3) reaction-controlled linkages, where metamorphic reactions, particularly dehydration reactions, are associated with an increase in the rate of fabric development. A general model is proposed in which (1) garnet and biotite porphyroblasts preferentially grow in stage 2 or 3 crenulation hinges, and (2) chlorite-consuming metamorphic reactions lead to pulses in the rate of fabric evolution. The data suggest that fabric development and porphyroblast growth may have been quite rapid, of the order of several hundreds of thousands of years, in these rocks. These microstructures and processes may be characteristic of low-pressure, first-cycle metamorphic belts.  相似文献   

7.
The orientation of the straight internal foliation Si within large ( 5 mm) garnet porphyroblasts has been measured relative to the orientation of the external foliation Se around a single antiform of 0.5 m wavelength, which folds the dominant regional foliation. The internal foliation is not constant in orientation, but varies consistently both with position around the fold and with the porphyroblast ellipticity. The dip of Si (hinge dip taken as zero) is consistently less than the dip of Se; it increases with increasing dip of Se and with increasing ellipticity of the porphyroblasts. Si effectively defines a fold with an opening angle greater than that in the external foliation. The opening angle of this fold in Si decreases with increasing porphyroblast ellipticity. The observed variation in the orientation of Si can be explained qualitatively by a flattened flexural flow model for fold development, as could be expected for folding of a pre-existing, strongly anisotropic foliation. The measurements clearly demonstrate that rotation of porphyroblasts relative to geographical co-ordinates did occur during the development of this fold and that a model based on the classical theories of rotation of stiff inclusions in a weaker viscous matrix is most appropriate.  相似文献   

8.
Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.
Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.  相似文献   

9.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

10.
Abstract Textural ‘unconformities’or truncations are common in porphyroblasts with complex inclusion trails. They reflect cycles of successive foliations that develop against competent porphyroblasts during orogenesis and are preserved by successive growth increments. Their truncational character results from shear and dissolution along a particular foliation generating a differentiated crenulation cleavage. The increment of porphyroblast growth that follows a textural ‘unconformity’may or may not mark a significant compositional change, depending on the amount of movement of the rock through P–T space between cleavage-forming events. Although historically interpreted to result from a significant metamorphic hiatus, most textural unconformities indicate that the reactions involved in the formation of these minerals are episodic during continuous prograde metamorphism, starting and stopping as a function of the stage of crenulation of the matrix foliation and the pattern of deformation partitioning. Such episodic reaction behaviour can only occur for multivariant reactions, or successive but different univariant reactions. The reason why garnet is the most common porphyroblast to exhibit evidence for episodic reactions is probably the fact that it grows by multivariant reactions over a much wider P–T range than most other common porphyroblast phases. Porphyroblast growth is micrometasomatic. It is episodic because a significant reduction of strain occurs within domains of progressive shortening each time continuous progressive shearing domains form on their margins. This stops microfracture development across the progressive shortening domains, thereby preventing rapid access and interaction of fluid, ions and complexes with porphyroblast boundaries. Shifting patterns of deformation partitioning and resulting small-scale juxtaposition of different compositional layers spreads the duration and location of multivariant reactions and causes differential timing of porphyroblast growth along a particular stratigraphic horizon. It may also locally preserve metastable metamorphic assemblages. In regionally metamorphosing/deforming pelites, near-simultaneous cessation of porphyroblast growth on all rims, once continuous differentiated progressive shearing domains have formed nearby, precludes fluid recirculation as a significant process for removal of material during cleavage development. Alternatively, diffusion of simple molecules and dissociated ions along actively shearing and micro-gaped phyllosilicates, with recomplexing in fluid-filled microfractures, readily explains the control of deformation partitioning on reaction site and reaction duration.  相似文献   

11.
Abstract In the Fleur de Lys Supergroup, western Newfoundland, inclusion trails in garnet and albite porphyroblasts indicate that porphyroblasts overgrew a crenulation foliation, without rotation, probably during the deformation event that produced the crenulations. Further deformation of the matrix resulted in strong re-orientation and retrograde metamorphism of the matrix foliation, which is consequently highly oblique to the crenulation foliation preserved in the porphyroblasts. The resulting matrix foliation locally preserves relics of the early crenulations, and also has itself been crenulated later in places. Thus the porphyroblasts grew before the later stages of deformation, rather than during the final stage, as had been suggested previously. The new interpretation is consistent with available 40Ar/39Ar cooling ages which indicate a late Ordovician-early Silurian metamorphic peak, rather than the Devonian peak suggested by previous workers. The inclusion patterns and microprobe data indicate normal outward growth of garnet porphyroblasts from a central nucleus, rather than as a series of veins as proposed by de Wit (1976a, b). However, the observations presented here support growth of porphyroblasts without rotation, which is implied by the de Wit model.  相似文献   

12.
The subduction and exhumation of accretionary prism metasedimentary rocks are accompanied by large‐strain ductile deformations which may be recorded in microstructures. Porphyroblast microstructures have been a key to unravel the kinematics in such deformed belts. Shape‐preferred orientation (SPO) of epidote and amphibole inclusions that define S‐shaped trails in prograde cores of plagioclase porphyroblasts were analysed from the high‐P/T Sambagawa metamorphic rocks. Inclusions are found to be elongate parallel to the [010] and [001] directions, respectively, and their long‐axis orientations define an internal foliation Si (best‐fit great circle) and lineation Li (maximum on the Si). S‐shaped inclusion trails in the orthogonal sections do not exhibit the same geometries, but rather are grouped into two types, where the foliation intersection axes (FIAs) are nearly perpendicular and parallel to Li, respectively. These two types of S‐shaped inclusion trails are seen in the sections inclined at low and high angles to the Li, respectively. However, the latter type commonly consists of composite trails, where the Si is first rotated about an FIA perpendicular to the Li (i.e. unique axis), and then about an FIA parallel to the Li. The S‐shaped inclusion trails are interpreted to have formed by the successive overgrowth of matrix minerals and rotation of the plagioclase porphyroblast cores about a unique axis in non‐coaxial deformation. The rotation of Si about an FIA nearly parallel to the Li is perhaps an apparent rotation, caused by the deflection of foliation around the growing prismatic plagioclase grain prior to inclusion into the porphyroblast. This study has for the first time documented the 3‐D geometry of S‐shaped inclusion trails in porphyroblasts from accretionary prism metasedimentary rocks and identified their origin, which helps to understand the flow kinematics in the deeper part of a subduction channel.  相似文献   

13.
Abstract The formation of spiral-shaped inclusion trails (SSITs) is problematical, and the two viable models for their formation involve opposite shear senses along the foliation in which the porphyroblasts are growing. One model argues for porphyroblast rotation, with respect to a geographically fixed reference frame, whereas the other argues for no such porphyroblast rotation, but instead rotation of the matrix foliation around the porphyroblast. Thus, porphyroblasts with SSITs cannot be used as shear-sense indicators until it is conclusively determined which model best explains them.
Any successful model must explain features associated with SSITs, including: (1) foliation truncation zones, (2) smoothly curving SSITs, (3) millipede microstructure, (4) total inclusion-trail curvature in median sections, (5) porphyroblasts with SSITs that have grown together, (6) evidence for relative porphyroblast displacements, (7) shear-sense indicators inside and outside porphyroblasts; (8) crenulations associated with porphyroblasts and (9) geometries in sections subparallel to spiral axes (axes of rotation). A detailed study of these features suggests that most, if not all, can be explained by both the rotational and non-rotational models, in spite of these models involving diametrically opposed movement senses. Therefore, geometrical analysis of individual porphyroblast microstructures may not determine which model best explains SSITs until the kinematics required to form these microstructures are better understood, in particular the sense of shear along a developing crenulation cleavage. Specific tests for determining the shear sense along crenulation cleavages are proposed, and results of such tests may conclusively resolve the debate over how SSITs form.  相似文献   

14.
15.
Abstract Seventy-seven spatially orientated, serial thin sections cut from a single rock reveal changes in the geometry of spiral-shaped inclusion trails (SSITs) in garnet porphyroblasts. The observed SSITs are doubly curved, non-cylindrical surfaces, with total inclusion-trail curvature decreasing systematically from the cores to the rims of porphyroblasts. The three-dimensional geometry of the SSITs, reconstructed with the aid of computer graphics, shows that the orientations of spiral axes defined by the SSITs are not related in any expected nor predictable way to the main foliation in the matrix. This suggests continued deformation after or during the latest stages of porphyroblast growth, which has important implications for the use of SSITs as shear-sense indicators. Whether the formation of SSITs involves significant porphyroblast rotation with respect to a geographically fixed reference frame cannot be determined from the available data.  相似文献   

16.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

17.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

18.
Abstract Most porphyroblasts never rotate during ductile deformation, provided they do not internally deform during subsequent events, with the exception of relatively uncommon but spectacular examples of spiralling garnets. Instead, the surrounding foliation rotates and reactivates due to partitioning of the deformation around the porphyroblast. Consequently, porphyroblasts commonly preserve the orientation of early foliations and stretching lineations within strain shadows or inclusion trails, even where these structures have been rotated or obliterated in the matrix due to subsequent deformation. These relationships can be readily used to help develop an understanding of the processes of foliation development and they demonstrate the prominent role of reactivation of old foliations during subsequent deformation. They can also be used to determine the deformation history, as porphyroblasts only rotate when the deformation cannot partition and involves progressive shearing with no combined bulk shortening component.  相似文献   

19.
Porphyroblast inclusion trails: the key to orogenesis   总被引:8,自引:0,他引:8  
Detailed microstructural analysis of inclusion trails in hundreds of garnet porphyroblasts from rocks where spiral-shaped inclusion trails are common indicates that spiral-shaped trails did not form by rotation of the growing porphyroblasts relative to geographic coordinates. They formed instead by progressive growth by porphyroblasts over several sets of near-orthogonal foliations that successively overprint one another. The orientations of these near-orthogonal foliations are alternately near-vertical and near-horizontal in all porphyroblasts examined. This provides very strong evidence for lack of porphyroblast rotation.
The deformation path recorded by these porphyroblasts indicates that the process of orogenesis involves a multiply repeated two-stage cycle of: (1) crustal shortening and thickening, with the development of a near-vertical foliation with a steep stretching lineation; followed by (2) gravitational instability and collapse of this uplifted pile with the development of a near-horizontal foliation, gravitational spreading, near-coaxial vertical shortening and consequent thrusting on the orogen margins. Correlation of inclusion trail overprinting relationships and asymmetry in porphyroblasts with foliation overprinting relationships observed in the field allows determination of where the rocks studied lie and have moved within an orogen. This information, combined with information about chemical zoning in porphyroblasts, provides details about the structural/metamorphic ( P-T-t ) paths the rocks have followed.
The ductile deformation environment in which a porphyroblast can rotate relative to geographic coordinates during orogenesis is spatially restricted in continental crust to vertical, ductile tear/transcurrent faults across which there is no component of bulk shortening or transpression.  相似文献   

20.
Inclusion – porphyroblast and porphyroblast – porphyroblast relationships show that abundant albite in mica schists in the Caledonides of the SW Scottish Highlands are part of the Barrovian metamorphic assemblage. Growth early in the D2 deformational phase of porphyroblast cores followed the growth of Mn‐rich garnet but preceded the growth of porphyroblasts of the index mineral almandine. Two sets of inclusion trails in the albite correspond to the regionally expressed S1 and S2. Straight trails of muscovite, chlorite, quartz, epidote and the earliest growth of biotite make up S1. Crenulated trails express deformation of S1 early in D2 with muscovite, chlorite, biotite, quartz, epidote and the Mn‐rich garnet associated with the development of S2 crenulation cleavage. The geometries of these trails uniquely record early stages of D2 deformational history. An 0?3 growth is related to the temporal coincidence of the formation of S1–S2 crenulation cleavage hinges as favourable sites for nucleation and the release of large amounts of water from prograde reactions during tectonothermal reconstitution of first cycle immature sediments with a volcanic component. The main characteristics of the regionally expressed D2 schistosity were developed during the major grain coarsening that followed both albite and almandine porphyroblast growth. Essentially inclusion‐free An 4?19 rims grew on the inclusion‐containing cores in the almandine zone in the later stages of schistosity growth and unoriented porphyroblasts of muscovite, biotite and chlorite indicate that mineral growth extended from the later stages of D2 to post‐D2. Previous interpretations of the albite porphyroblast growth having been during D4 to post‐D4 contemporaneous with retrogression are inconsistent with the microstructural evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号