首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
胡根生  陈长春  梁栋 《测绘学报》2014,43(8):848-854
针对ACCA(云量自动评估)算法难以检测Landsat图像中的半透明云问题,提出了一种ACCA和WSVM(加权支持向量机)相结合的云检测算法.首先根据云在不同波段中的大气辐射特点,结合Landsat ETM+图像数据的光谱特性,利用ACCA算法将图像像元初步分成云像元、非云像元和待定像元,再以云的光谱特性构造特征向量,利用WSVM算法进行待定像元的云层检测,最终获得全部图像的云检测结果.仿真实验结果表明,该方法既具有ACCA算法的云检测优势,还对ACCA算法难以识别的半透明云有很好的检测效果.  相似文献   

2.
The main aim of this research is to highlight the environment change indicators during the last 20 years in a representa-tive area of the southern part of Iraq(Basrah Province was taken as a case) to understand the main causes which led to widespread environment degradation phenomena using a 1:250000 mapping scale.Remote sensing and GIS’s software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover(LULC) classes:vegetation land,sand land,urban area,unused land,and water bodies.Supervised classification and Normalized Difference Vegetation Index(NDVI),Normalized Difference Build-up Index(NDBI),Normalized Difference Water Index(NDWI),Normalized Difference Salinity In-dex(NDSI),and Topsoil Grain Size Index(GSI) were adopted in this research and used respectively to retrieve its class boundary.The results showed a clear deterioration in vegetative cover(514.9 km2) and an increase of sand dune accumulations(438.6 km2),accounting for 10.1,and 10.6 percent,respectively,of the total study area.In addition,a decrease in the water bodies’ area was de-tected(228.9 km2).Sand area accumulations had increased in the total study area,with an annual increasing expansion rate of(33.7 km2·yr·1) during the thirteen years covered by the study.It is therefore imperative that Iraqi government undertake a series of pru-dent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes.  相似文献   

3.
In support to the Remote Sensing Survey of the global Forest Resource Assessment 2010, the TREES-3 project has processed more than 12,000 Landsat TM and ETM+ data subsets systematically distributed over the tropics. The project aims at deriving area estimates of tropical forest cover change for the periods 1990-2000-2005. The paper presents the pre-processing steps applied in an operational and robust manner to this large amount of multi-date and multi-scene imagery: conversion to top-of-atmosphere reflectance, cloud and cloud shadow detection, haze correction and image radiometric normalization. The results show that the haze correction algorithm has improved the visual appearance of the image and significantly corrected the digital numbers for Landsat visible bands, especially the red band. The impact of the normalization procedures (forest normalization and relative normalization) was assessed on 210 image pairs: in all cases the correlation between the spectral values of the same land cover in both images was improved. The developed automatic pre-processing chain provided a consistent multi-temporal data set across the tropics that will constitute the basis for an automatic object-based supervised classification.  相似文献   

4.
Land cover roughness coefficients (LCRs) have been used in multivariate spatial models to test the mitigation potential of coastal vegetation to reduce impacts of the 2004 tsunami in Aceh, Indonesia. Previously, a Landsat 2002 satellite imagery was employed to derive land cover maps, which were then combined with vegetation characteristics, i.e., stand height, stem diameter and planting density to obtain LCRs. The present study tested LCRs extracted from 2003 and 2004 Landsat (30 m) images as well as a combination of 2003 and 2004 higher spatial resolution SPOT (10 m) imagery, while keeping the previous vegetation characteristics. Transects along the coast were used to extract land cover, whenever availability and visibility allowed. These new LCRs applied in previously developed tsunami impact models on wave outreach, casualties and damages confirmed previous findings regarding distance to the shoreline as a main factor reducing tsunami impacts. Nevertheless, the models using the new LCRs did not perform better than the original one. Particularly casualties models using 2002 LCRs performed better (δAIC > 2) than the more recent Landsat and SPOT counterparts. Cloud cover at image acquisition for Landsat and low area coverage for SPOT images decreased statistical predictive power (fewer observations). Due to the large spatial heterogeneity of tsunami characteristics as well as topographic and land-use features, it was more important to cover a larger area. Nevertheless, if more land cover classes would be referenced and high resolution imagery with low cloud cover would be available, the full benefits of higher spatial resolution imagery used to extract more precise land use roughness coefficients could be exploited.  相似文献   

5.
This paper describes a simple and adaptive methodology for large area forest/non-forest mapping using Landsat ETM+ imagery and CORINE Land Cover 2000. The methodology is based on scene-by-scene analysis and supervised classification. The fully automated processing chain consists of several phases, including image segmentation, clustering, adaptive spectral representativity analysis, training data extraction and nearest-neighbour classification. This method was used to produce a European forest/non-forest map through the processing of 415 Landsat ETM+ scenes. The resulting forest/non-forest map was validated with three independent data sets. The results show that the map’s overall point-level agreement with our validation data generally exceeds 80%, and approaches 90% in central European conditions. Comparison with country-level forest area statistics shows that in most cases the difference between the forest proportion of the derived map and that computed from the published forest area statistics is below 5%.  相似文献   

6.
Biodiversity mapping in extensive tropical forest areas poses a major challenge for the interpretation of Landsat images, because floristically clearly distinct forest types may show little difference in reflectance. In such cases, the effects of the bidirectional reflection distribution function (BRDF) can be sufficiently strong to cause erroneous image interpretation and classification. Since the opening of the Landsat archive in 2008, several BRDF normalization methods for Landsat have been developed. The simplest of these consist of an empirical view angle normalization, whereas more complex approaches apply the semi-empirical Ross–Li BRDF model and the MODIS MCD43-series of products to normalize directional Landsat reflectance to standard view and solar angles. Here we quantify the effect of surface anisotropy on Landsat TM/ETM+ images over old-growth Amazonian forests, and evaluate five angular normalization approaches. Even for the narrow swath of the Landsat sensors, we observed directional effects in all spectral bands. Those normalization methods that are based on removing the surface reflectance gradient as observed in each image were adequate to normalize TM/ETM+ imagery to nadir viewing, but were less suitable for multitemporal analysis when the solar vector varied strongly among images. Approaches based on the MODIS BRDF model parameters successfully reduced directional effects in the visible bands, but removed only half of the systematic errors in the infrared bands. The best results were obtained when the semi-empirical BRDF model was calibrated using pairs of Landsat observation. This method produces a single set of BRDF parameters, which can then be used to operationally normalize Landsat TM/ETM+ imagery over Amazonian forests to nadir viewing and a standard solar configuration.  相似文献   

7.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

8.
The successful launch of Landsat 8 provides a new data source for monitoring land cover, which has the potential to significantly improve the characterization of the earth’s surface. To assess data performance, Landsat 8 Operational Land Imager (OLI) data were first compared with Landsat 7 ETM + data using texture features as the indicators. Furthermore, the OLI data were investigated for land cover classification using the maximum likelihood and support vector machine classifiers in Beijing. The results indicated that (1) the OLI data quality was slightly better than the ETM + data quality in the visible bands, especially the near-infrared band of OLI the data, which had a clear improvement; clear improvement was not founded in the shortwave-infrared bands. Moreover, (2) OLI data had a satisfactory performance in terms of land cover classification. In summary, OLI data were a reliable data source for monitoring land cover and provided the continuity in the Landsat earth observation.  相似文献   

9.
姜亢  胡昌苗  于凯  赵永超 《遥感学报》2014,18(2):287-306
地形校正可以减小地形起伏对地物光谱的影响,提高计算机分类在山区的精度。设计了针对全球土地覆盖分类的Landsat TM/ETM+数据地形校正方法 SCOS(Smoothed COS余弦),首先对地形的坡度角进行抹平处理,很大程度上削弱了地表非朗伯性对地形校正的影响,然后利用简单有效的余弦校正去除地形效应。该方法与其他常用地形校正算法的对比分析是通过对全球不同区域、不同地表覆盖的有代表性的6景Landsat TM/ETM+数据的试验,采用统计分析与目视判读的方式,从过度校正和类内均一性两个方面进行的。结果表明,该方法在目视效果和统计结果上优于常规方法,并且更加简单有效,无需复杂的大气参数及传感器参数,满足全球地表覆盖分类对地形校正的需求。  相似文献   

10.
Landsat data are the longest available records that consistently document global change. However, the extent and degree of cloud coverage typically determine its usability, especially in the tropics. In this study, scene-based metadata from the U.S. Geological Survey Landsat inventories, ten-day, monthly, seasonal, and annual acquisition probabilities (AP) of targeted images at various cloud coverage thresholds (10% to 100%) were statistically analyzed using available Landsat TM, ETM+, and OLI observations over mainland Southeast Asia (MSEA) from 1986 to 2015. Four significant results were found. First, the cumulative average acquisition probability of available Landsat observations over MSEA at the 30% cloud cover (CC) threshold was approximately 41.05%. Second, monthly and ten-day level probability statistics for the 30% CC threshold coincide with the temporal distribution of the dry and rainy seasons. This demonstrates that Landsat images acquired during the dry season satisfy the requirements needed for land cover monitoring. Third, differences in acquisition probabilities at the 30% CC threshold are different between the western and eastern regions of MSEA. Finally, the ability of TM, ETM+, and OLI to acquire high-quality imagery has gradually enhanced over time, especially during the dry season, along with consequently larger probabilities at lower CC thresholds.  相似文献   

11.
Remote sensing indices of burn area and fire severity have been developed and tested for forest ecosystems, but not sparsely vegetated, desert shrub-steppe in which large wildfires are a common occurrence and a major issue for land management. We compared the performance of remote sensing indices for detecting burn area and fire severity with extensive ground-based cover assessments made before and after the prescribed burning of a 3 km2 shrub-steppe area. The remote sensing indices were based on either Landsat 7 ETM+ or SPOT 5 data, using either single or multiple dates of imagery. The indices delineating burned versus unburned areas had better overall, User, and Producer's accuracies than indices delineating levels of fire severity. The Soil Adjusted Vegetation Index (SAVI) calculated from SPOT had the greatest overall accuracy (100%) in delineating burned versus unburned areas. The relative differenced Normalized Burn Ratio (RdNBR) using Landsat ETM+ provided the highest accuracies (73% overall accuracy) for delineating fire severity. Though SPOT's spatial resolution likely conferred advantages for determining burn boundaries, the higher spectral resolution (particularly band 7, 2.21 μm) of Landsat ETM+ may be necessary for detecting differences in fire severity in sparsely vegetated shrub-steppe.  相似文献   

12.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

13.
TerraSAR-X satellite acquires very high spatial resolution data with potential for detailed land cover mapping. A known problem with synthetic aperture radar (SAR) data is the lack of spectral information. Fusion of SAR and multispectral data provides opportunities for better image interpretation and information extraction. The aim of this study was to investigate the fusion between TerraSAR-X and Landsat ETM+ for protected area mapping using high pass filtering (HPF), principal component analysis with band substitution (PCA) and principal component with wavelet transform (WPCA). A total of thirteen land cover classes were identified for classification using a non-parametric C 4.5 decision tree classifier. Overall classification accuracies of 74.99%, 83.12% and 85.38% and kappa indices of 0.7220, 0.8100 and 0.8369 were obtained for HPF, PCA and WPCA fusion approaches respectively. These results indicate a high potential for a combined use of TerraSAR-X and Landsat ETM+ data for protected area mapping in Uganda.  相似文献   

14.
Monitoring loss of humid tropical forests via remotely sensed imagery is critical for a number of environmental monitoring objectives, including carbon accounting, biodiversity, and climate modeling science applications. Landsat imagery, provided free of charge by the U.S. Geological Survey Center for Earth Resources Observation and Science (USGS/EROS), enables consistent and timely forest cover loss updates from regional to biome scales. The Indonesian islands of Sumatra and Kalimantan are a center of significant forest cover change within the humid tropics with implications for carbon dynamics, biodiversity maintenance and local livelihoods. Sumatra and Kalimantan feature poor observational coverage compared to other centers of humid tropical forest change, such as Mato Grosso, Brazil, due to the lack of ongoing acquisitions from nearby ground stations and the persistence of cloud cover obscuring the land surface. At the same time, forest change in Indonesia is transient and does not always result in deforestation, as cleared forests are rapidly replaced by timber plantations and oil palm estates. Epochal composites, where single best observations are selected over a given time interval and used to quantify change, are one option for monitoring forest change in cloudy regions. However, the frequency of forest cover change in Indonesia confounds the ability of image composite pairs to quantify all change. Transient change occurring between composite periods is often missed and the length of time required for creating a cloud-free composite often obscures change occurring within the composite period itself. In this paper, we analyzed all Landsat 7 imagery with <50% cloud cover and data and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify forest cover loss for Sumatra and Kalimantan from 2000 to 2005. We demonstrated that time-series approaches examining all good land observations are more accurate in mapping forest cover change in Indonesia than change maps based on image composites. Unlike other time-series analyses employing observations with a consistent periodicity, our study area was characterized by highly unequal observation counts and frequencies due to persistent cloud cover, scan line corrector off (SLC-off) gaps, and the absence of a complete archive. Our method accounts for this variation by generating a generic variable space. We evaluated our results against an independent probability sample-based estimate of gross forest cover loss and expert mapped gross forest cover loss at 64 sample sites. The mapped gross forest cover loss for Sumatra and Kalimantan was 2.86% of the land area, or 2.86 Mha from 2000 to 2005, with the highest concentration having occurred in Riau and Kalimantan Tengah provinces.  相似文献   

15.
Human-induced land use/cover change has been considered to be one of the most important parts of global environmental changes. In loess hilly and gully regions, to prevent soil loss and achieve better ecological environments, soil conservation measures have been taken during the past decades. The main objective of this study is to quantify the spatio-temporal variability of land use/cover change spatial patterns and make preliminary estimation of the role of human activity in the environmental change in Xihe watershed, Gansu Province, China. To achieve this objective, the methodology was developed in two different aspects, that is, (1) analysis of change patterns by binary image of change trajectories overlaid with different natural geographic factors, in which Relative Change Intensity (RCI) metric was established and used to make comparisons, and (2) analysis based on pattern metrics of main trajectories in the study area. Multi-source and multi-temporal Remote Sensing (RS) images (including Landsat ETM+ (30 June 2001), SPOT imagery (21 November 2003 and 5 May 2008) and CBERS02 CCD (5 June 2006)) were used due to the constraints of the availability of remotely sensed data. First, they were used to extract land use/cover types of each time node by object-oriented classification method. Classification results were then utilized in the trajectory analysis of land use/cover changes through the given four time nodes. Trajectories at every pixel were acquired to trace the history of land use/cover change for every location in the study area. Landscape metrics of trajectories were then analyzed to detect the change characteristics in time and space through the given time series. Analysis showed that most land use/cover changes were caused by human activities, most of which, under the direction of local government, had mainly led to virtuous change on the ecological environments. While, on the contrary, about one quarter of human-induced changes were vicious ones. Analysis through overlaying binary image of change trajectories with natural factors can efficiently show the spatio-temporal distribution characteristics of land use/cover change patterns. It is found that in the study area RCI of land use/cover changes is related to the distance to the river line. And there is a certain correlation between RCI and slope grades. However, no obvious correlation exists between RCI and aspect grades.  相似文献   

16.
基于新型水体指数(NWI)进行水体信息提取的实验研究   总被引:6,自引:0,他引:6  
基于遥感数据构建的水体指数模型可用于水体信息的提取。本文在对水体及其背景地物进行光谱特征分析的基础上,结合水体在近红外和中红外波段(相当于Landsat TM/ETM+影像的Band 4,Band 5和Band 7)同时具有强吸收这一典型特征,提出了一种新型的水体指数NW I(New W ater Index)。将该指数在含不同水体类型的遥感影像上进行实验,均获得了较好的提取效果。利用文献样本数据所作的实验表明,NW I具有很强的普适性,可用于水体信息的快速提取,且具有较高的精度。  相似文献   

17.
A fine-resolution leaf area index (LAI) data set over a 150 km × 150 km region in central Kazakhstan is retrieved using Landsat ETM+ imagery and ground-based LAI inferred from hemispherical photography and direct measurements. Regression analysis and geostatistics are applied for developing empirical models of LAI from Landsat ETM+ data. The best accuracy is achieved using a model employing a canonical index that combines all the contributions of individual Landsat ETM+ bands into a single index (R 2 = 0.67; RMSE = 0.21). This model is then applied for mapping LAI at a regional scale.  相似文献   

18.
A spectral linear-mixing model using Landsat ETM+ imagery was undertaken to estimate fraction images of green vegetation, soil and shade in an indigenous land area in the state of Mato Grosso in the central-western region of Brazil. The fraction images were used to classify different types of land use and vegetation cover. The fraction images were classified by the following two methods: (a) application of a segmentation based on the region-growing technique; and (b) grouping of the regions segmented using the per-region unsupervised classifier named ISOSEG. Adopting a 75% threshold, ISOSEG generated 44 clusters that were grouped into eight land-use and vegetation-cover classes. The mapping achieved an average accuracy of 83%, showing that the methodology is efficient in mapping areas of great land-use and vegetation-cover diversity, such as that found in the Brazilian cerrado (savanna).  相似文献   

19.
In perennial and natural vegetation systems, monitoring changes in vegetation over time is of fundamental interest for identifying and quantifying impacts of management and natural processes. Subtle changes in vegetation cover can be identified by calculating the trends of a vegetation density index over time. In this paper, we apply such an index-trends approach, which has been developed and applied to time series Landsat imagery in rangeland and woodland environments, to continental-scale monitoring of disturbances within forested regions of Australia. This paper describes the operational methods used for the generation of National Forest Trend (NFT) information, which is a time-series summary providing visual indication of within-forest vegetation changes (disturbance and recovery) over time at 25 m resolution. This result is based on a national archive of calibrated Landsat TM/ETM+ data from 1989 to 2006 produced for Australia's National Carbon Accounting System (NCAS). The NCAS was designed in 1999 initially to provide consistent fine-scale classifications for monitoring forest cover extent and changes (i.e. land use change) over the Australian continent using time series Landsat imagery. NFT information identifies more subtle changes within forested areas and provides a capacity to identify processes affecting forests which are of primary interest to ecologists and land managers. The NFT product relies on the identification of an appropriate Landsat-based vegetation cover index (defined as a linear combination of spectral image bands) that is sensitive to changes in forest density. The time series of index values at a location, derived from calibrated imagery, represents a consistent surrogate to track density changes. To produce the trends summary information, statistical summaries of the index response over time (such as slope and quadratic curvature) are calculated. These calculated index responses of woody vegetation cover are then displayed as maps where the different colours indicate the approximate timing, direction (decline or increase), magnitude and spatial extent of the changes in vegetation cover. These trend images provide a self-contained and easily interpretable summary of vegetation change at scales that are relevant for natural resource management (NRM) and environmental reporting.  相似文献   

20.
Failure of the Scan Line Corrector (SLC) on the Landsat ETM+ sensor has had a major impact on many applications that rely on continuous medium resolution imagery to meet their objectives. The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) program uses Landsat imagery as the primary source of data to produce crop-specific maps for 20 states in the USA. A new method has been developed to fill the image gaps resulting from the SLC failure to support the needs of Landsat users who require coincident spectral data, such as for crop type mapping and monitoring. We tested the new gap-filled method for a CDL crop type mapping project in eastern Nebraska. Scan line gaps were simulated on two Landsat 5 images (spring and late summer 2003) and then gap-filled using landscape boundary models, or segment models, that were derived from 1992 and 2002 Landsat images (used in the gap-fill process). Various date combinations of original and gap-filled images were used to derive crop maps using a supervised classification process. Overall kappa values were slightly higher for crop maps derived from SLC-off gap-filled images compared to crop maps derived from the original imagery (0.3–1.3% higher). Although the age of the segment model used to derive the SLC-off gap-filled product did not negatively impact the overall agreement, differences in individual cover type agreement did increase (?0.8%–1.6% using the 2002 segment model to ?5.0–5.1% using the 1992 segment model). Classification agreement also decreased for most of the classes as the size of the segment used in the gap-fill process increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号