首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

2.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

3.
Airborne high–spatial resolution images were evaluated for mapping purposes in a complex Atlantic rainforest environment in southern Brazil. Two study sites, covered predominantly by secondary evergreen rainforest, were surveyed by airborne multispectral high-resolution imagery. These aerophotogrammetric images were acquired at four spectral bands (visible to near-infrared) with spatial resolution of 0.39 m. We evaluated different data input scenarios to suit the object-oriented classification approach. In addition to the four spectral bands, auxiliary products such as band ratios and digital elevation models were considered. Comparisons with traditional pixel-based classifiers were also performed. The results showed that the object-based classification approach yielded a better overall accuracy, ranging from 89% to 91%, than the pixel-based classifications, which ranged from 62% to 63%. The individual classification accuracy of forest-related classes, such as young successional forest stages, benefits the object-based approach. These classes have been reported in the literature as the most difficult to map in tropical environments. The results confirm the potential of object-based classification for mapping procedures and discrimination of successional forest stages and other related land use and land cover classes in complex Atlantic rainforest environments. The methodology is suggested for further SAAPI acquisitions in order to monitor such endangered environment as well as to support National Land and Environmental Management Protocols.  相似文献   

4.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

5.
An image dataset from the Landsat OLI spaceborne sensor is compared with the Landsat TM in order to evaluate the excellence of the new imagery in urban landcover classification. Widely known pixel-based and object-based image analysis methods have been implemented in this work like Maximum Likelihood, Support Vector Machine, k-Nearest Neighbor, Feature Analyst and Sub-pixel. Classification results from Landsat OLI provide more accurate results comparing to the Landsat TM. Object-based classifications produced a more uniform result, but suffer from the absorption of small rare classes into large homogenous areas, as a consequence of the segmentation, merging and the spatial parameters in the spatial resolution (30 m) of Landsat images. Based exclusively on the overall accuracy reports, the SVM pixel-based classification from Landsat 8 proved to be the most accurate for the purpose of mapping urban land cover, using medium spatial resolution imagery.  相似文献   

6.
Abstract

Land use/land cover (LULC) classification with high accuracy is necessary, especially in eco-environment research, urban planning, vegetation condition study and soil management. Over the last decade a number of classification algorithms have been developed for the analysis of remotely sensed data. The most notable algorithms are the object-oriented K-Nearest Neighbour (K-NN), Support Vector Machines (SVMs) and the Decision Trees (DTs) amongst many others. In this study, LULC types of Selangor area were analyzed on the basis of the classification results acquired using the pixel-based and object-based image analysis approaches. SPOT 5 satellite images with four spectral bands from 2003 and 2010 were used to carry out the image classification and ground truth data were collected from Google Earth and field trips. In pixel-based image analysis, a supervised classification was performed using the DT classifier. On the other hand, object-oriented (K-NN) image analysis was evaluated using standard nearest neighbour as classifier. Subsequently SVM object-based classification was performed. Five LULC categories were extracted and the results were compared between them. The overall classification accuracies for 2003 and 2010 showed that the object-oriented (K-NN) (90.5% and 91%) performed better results than the pixel-based DT (68.6% and 68.4%) and object-based SVM (80.6% and 78.15%). In general, the object-oriented (K-NN) performed better than both DTs and SVMs. The obtained LULC classification maps can be used to improve various applications such as change detection, urban design, environmental management and zooning.  相似文献   

7.
In this study, we investigated the performance of different fusion and classification techniques for land cover mapping in Hilir Perak, Peninsula Malaysia using RADAR and Landsat-8 images in a predominantly agricultural area. The fusion methods used are Brovey Transform, Wavelet Transform, Ehlers and Layer Stacking and their results classified into seven different land cover classes which include (1) pixel-based classifiers (spectral angle mapper (SAM), maximum likelihood (ML), support vector machine (SVM)) and (2) Object-based (rule-based and standard nearest neighbour (NN)) classifiers. The result shows that pixel-based classification achieved maximum accuracy of the optical data classification using SVM in Landsat-8 with 74.96% accuracy compared to SAM and ML. For multisource data classification, the highest overall accuracy recorded for layer stacking (SVM) was 79.78%, Ehlers fusion (SVM) with 45.57%, Brovey fusion (SVM) with 63.70% and Wavelet fusion (SVM) 61.16%. And for object-based classifiers, the overall classification accuracy is 95.35% for rule-based and 76.33% for NN classifier, respectively. Based on the analysis of their performances, object-based and the rule-based classifiers produced the best classification accuracy from the fused images.  相似文献   

8.
This paper investigates the synergistic use of high-resolution multispectral imagery and Light Detection and Ranging (LiDAR) data for object-based classification of urban area. The main contribution of this paper is the development of a semi-automated object-based and rule-based classification method. In the implemented approach, the diverse knowledge about land use/land cover classes are transformed into a set of specialized rules. Further, this paper explores supervised Gaussian Mixture Models for classification, which have been primarily used for unsupervised classification. The work is carried out on test data from two different sites. Contribution of the LiDAR data resulted in a significant improvement of overall Kappa. Accuracy assessment carried out for aforementioned classification methods shows higher overall kappa for both the study sites.  相似文献   

9.
赵诣  蒋弥 《测绘学报》2019,48(5):609-617
提出一种基于极化参数优化的面向对象分类方法。该方法结合光学和SAR数据,有效提高了对地物的识别能力。本文方法的关键在于:在■分解中,使用光学影像指导SAR影像选择同质点,使其更精确地估计极化参数并结合光学波谱信息作为输入特征;使用面向对象的分类方法,仅将光学影像作为分割输入,避免SAR噪声引起的分割错误。以美国Bakersfield地区的Sentinel-1/2数据为例,确定7种地物类型,对比分析不同输入与不同分类器对分类结果的影响。研究表明,优化输入参数在纹理丰富区域能够有效提高分类精度;面向对象的分类结果更加稳定并较好地维持地表几何特征;改进分类方法较传统分类方法总体精度提高了近10%,达到92.6%。  相似文献   

10.
Macroalgae plays an important role in coastal ecosystems. The accurate delineation of macroalgae areas is important for environmental management. This study compared the pixel- and object-based methods using Gaofen satellite no. 2 image to explore an efficient classification approach. Expert system rules and nearest neighbour classifier were adopted for object-based classification, whereas maximum likelihood classifier was implemented in the pixel-based approach. Normalized difference vegetation index, normalized difference water index, mean value of the blue band and geometric characteristics were selected as features to distinguish macroalgae farms by considering the spectral and spatial characteristics. Results show that the object-based method achieved a higher overall accuracy and kappa coefficient than the pixel-based method. Moreover, the object-based approach displayed superiority in identifying Porphyra class. These findings suggest that the object-based method can delineate macroalgae farming areas efficiently and be applied in the future to monitor the macroalgae farms with high spatial resolution imagery.  相似文献   

11.
Land use/cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land use/cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims at establishing an efficient classification approach to accurately map all broad land use/cover classes in a large, heterogeneous tropical area, as a basis for further studies (e.g., land use/cover change, deforestation and forest degradation). Specifically, we first compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbor and four different support vector machines – SVM), and hybrid (unsupervised–supervised) classifiers, using hard and soft (fuzzy) accuracy assessments. We then assess, using the maximum likelihood algorithm, what textural indices from the gray-level co-occurrence matrix lead to greater classification improvements at the spatial resolution of Landsat imagery (30 m), and rank them accordingly. Finally, we use the textural index that provides the most accurate classification results to evaluate whether its usefulness varies significantly with the classifier used. We classified imagery corresponding to dry and wet seasons and found that SVM classifiers outperformed all the rest. We also found that the use of some textural indices, but particularly homogeneity and entropy, can significantly improve classifications. We focused on the use of the homogeneity index, which has so far been neglected in land use/cover classification efforts, and found that this index along with reflectance bands significantly increased the overall accuracy of all the classifiers, but particularly of SVM. We observed that improvements in producer's and user's accuracies through the inclusion of homogeneity were different depending on land use/cover classes. Early-growth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land use/cover classes were mapped with producer's and user's accuracies of ∼90%. Our classification approach seems very well suited to accurately map land use/cover of heterogeneous landscapes, thus having great potential to contribute to climate change mitigation schemes, conservation initiatives, and the design of management plans and rural development policies.  相似文献   

12.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

13.
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.  相似文献   

14.
Regional operational forest species mapping is an active research topic that aims to provide the systematic and updatable information necessary for understanding and monitoring the rapidly changing forest environment. In this study, we investigated the potential of satellite hyperspectral imagery in regional forest species mapping by employing a pixel-based and an object-based nearest neighbour classifier in two different Mediterranean study areas. The overall thematic accuracy of the produced maps was assessed using reference data collected in the field and ranged between 0.72 and 0.83. No approach was found to be superior for the study areas. The McNemar test showed no statistically significant difference at the 95% confidence level in the classification accuracies achieved by the two approaches. Both pixel- and object-based approaches provide useful maps, suggesting that regional forest species mapping from space has much potential.  相似文献   

15.
Object-based image analysis (OBIA) uses object features (or attributes) that relateto the pixels contained by the image object to assist in image classification. These object features include spectral, shape, texture and context features. With hundreds of available features, the identification of those that can improve separability between classes is critical for OBIA. The Separability and Thresholds (SEaTH) algorithm calculates the SEaTH of object–classes for the given features. The SEaTH algorithm avoids time-consuming trial-and-error practice for seeking important features and thresholds. This article tests the SEaTH algorithm on Landsat-7 Enhanced Thematic Mapper (ETM+) imagery in a heterogeneous landscape with multiple land cover classes. The results suggest SEaTH is a strong alternative to other automated approaches, yielding an agreement of 79% with reference data. In comparison, an object-based nearest neighbour classifier yielded 66% agreement and a pixel-based maximum likelihood classifier yielded 69% agreement.  相似文献   

16.
With the increasing availability of high-spatial-resolution remote sensing imageries and with the observed limitations of pixel-based techniques, the development and testing of geographic object-based image analysis (GEOBIA) techniques for image classification have become one of the main research areas in geospatial science. This paper examines and compares the classification performance of a pixel-based method and an object-based method as applied to high- (QuickBird satellite image) and medium- (Landsat TM image) spatial-resolution imageries in the context of urban and suburban landscapes. For the pixel-based classification, the maximum-likelihood supervised classification approach was employed. And for the object-based classification, the pixel-based classified maps were integrated with a set of image segments produced using various calibrations. The results show evidence that the object-based method can produce classifications that are more accurate for both high- and medium-spatial- resolution imageries in the context of urban and suburban landscapes.  相似文献   

17.
To have sustainable management and proper decision-making, timely acquisition and analysis of surface features are necessary. Traditional pixel-based analysis is the popular way to extract different categories, but it is not comparable by the achievements that can be achieved through the object-based method that uses the additional characteristics of features in the process of classification. In this paper, three types of classification were used to classify SPOT 5 satellite image in mapping land cover; Support vector machine (SVM) pixel-based, SVM object-based and Decision Tree (DT) pixel-based classification. Normalised Difference Vegetation Index and the brightness value of two infrared bands (NIR and SWIR) were used in manually developed DT classification. The classification of the SVM (pixel based) was generated using the selected groups of pixels that represent the selected features. In addition, the SVM (object based) was implemented by using radial-based function kernel. The classified features were oil palm, rubber, urban area, soil, water and other vegetation. The study found that the overall classification of the DT was the lowest at 69.87% while those of SVM (pixel based) and SVM (object based) were 76.67 and 81.25%, respectively.  相似文献   

18.
Logistic model tree (LMT), a new method integrating standard decision tree (DT) induction and linear logistic regression algorithm in a single tree, have been recently proposed as an alternative to DT-based learning algorithms. In this study, the LMT was applied in the context of pixel- and object-based classifications using high-resolution WorldView-2 imagery, and its performance was compared with C4.5, random forest and Adaboost. Results of the study showed that the LMT generally produced more accurate classification results than the other methods for both pixel- and object-based classifications. The improvement in classification accuracy reached to 3% in pixel-based and 5% in object-based classifications. It was also estimated that the LMT algorithm produced the most accurate results considering the allocation and overall disagreement errors. Based on the Wilcoxon’s Signed-Ranks tests, the performance differences between the LMT and the other methods were statistically significant for both pixel- and object-based image classifications.  相似文献   

19.
Abstract

Landsat MSS, TM and SPOT XS imageries were used in conjunction with unsupervised, supervised and hybrid classilication techniques to classify land cover types in semi‐arid savannas of Mathison Pastoral Station in the Katherine region of northern Australia. Accuracy assessment was based on field data from 246 ground survey sites over a 745‐km2 study area. Of 14 land cover classes identified by traditional mapping means, all combinations of imageries and classification techniques differentiated at least seven land cover types. The overall accuracy for these classifications ranged between 43% and 67%. SPOT XS image delivered the best accuracy followed by TM and MSS; unsupervised classification performed better than supervised and hybrid methods. User's and producer's accuracy of individual land units ranged from 0% to 100%. Riparian woodlands, woodland on limestone slopes, shrubland on clay plains, woodland on limestone plains and shadows were the best‐mapped classes. The land units that were associated with undulating hills were not mapped accurately. However, incorporation of a digital elevation model (DEM) in a GIS improved the overall accuracy. The user's and producer's accuracy of dominant land cover types were also enhanced. The classification results and the efficacy of the techniques at Mathison were similar to those found for a nearby semi‐arid area (Kidman Springs) about 200 km from Mathison. However, the overall accuracy was lower at Mathison than at Kidman Springs. Spectral classification masks were developed from the SPOT XS and TM imageries at Kidman Springs, and were applied to classify SPOT XS and TM imageries at Mathison. Initial results showed that the classification mask could be successfully extrapolated to map dominant land cover types but only with moderate accuracy (50%).  相似文献   

20.
Abstract

This paper investigates the contribution of multi-temporal enhanced vegetation index (EVI) data to the improvement of object-based classification accuracy using multi-spectral moderate resolution imaging spectral-radiometer (MODIS) imagery. In object-oriented classification, similar pixels are firstly grouped together and then classified; the produced result does not suffer the speckled appearance and closer to human vision. EVI data are from the MODIS sensor aboard Terra spacecraft. 69 EVI data (scenes) were collected during the period of three years (2001–2003) in a mountainous vegetated area. These data sets were used to study the phenology of the land cover types. Different land cover types show distinct fluctuations over time in EVI values and this information might be used to improve object-oriented land cover classification. Two experiments were carried out: one was only with single date MODIS multispectral data, and the other one including also the 69 EVI images. Eight classes were distinguished: temperate forest, tropical dry forest, grassland, irrigated agriculture, rain-fed agriculture, orchards, lava flows and human settlement. The two classifications were evaluated with independent verification data, and the results showed that with multi-temporal EVI data, the classification accuracy was improved 5.2%. Evaluated by McNemar's test, this improved was significant, with significance level p=0.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号