首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
城市热岛的遥感研究进展   总被引:33,自引:3,他引:33  
系统总结了应用遥感技术开展城市热岛研究的数据、方法与成果。对国内外学者有关城市热岛的形态结构、过程变化及成因分析等方面的研究内容进行了较为详细的评述,在此基础上,对未来城市热岛遥感研究的方向进行了展望。  相似文献   

2.
This study focuses on using remote sensing for comparative assessment of surface urban heat island (UHI) in 18 mega cities in both temperate and tropical climate regions. Least-clouded day- and night-scenes of TERRA/MODIS acquired between 2001 and 2003 were selected to generate land-surface temperature (LST) maps. Spatial patterns of UHIs for each city were examined over its diurnal cycle and seasonal variations. A Gaussian approximation was applied in order to quantify spatial extents and magnitude of individual UHIs for inter-city comparison. To reveal relationship of UHIs with surface properties, UHI patterns were analyzed in association with urban vegetation covers and surface energy fluxes derived from high-resolution Landsat ETM+ data. This study provides a generalized picture on the UHI phenomena in the Asian region and the findings can be used to guide further study integrating satellite high-resolution thermal data with land-surface modeling and meso-scale climatic modeling in order to understand impacts of urbanization on local climate in Asia.  相似文献   

3.
As more than 50% of the human population are situated in cities of the world, urbanization has become an important contributor to global warming due to remarkable urban heat island (UHI) effect. UHI effect has been linked to the regional climate, environment, and socio-economic development. In this study, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, respectively acquired in 1989 and 2001, were utilized to assess urban area thermal characteristics in Fuzhou, the capital city of Fujian province in south-eastern China. As a key indicator for the assessment of urban environments, sub-pixel impervious surface area (ISA) was mapped to quantitatively determine urban land-use extents and urban surface thermal patterns. In order to accurately estimate urban surface types, high-resolution imagery was utilized to generate the proportion of impervious surface areas. Urban thermal characteristics was further analysed by investigating the relationships between the land surface temperature (LST), percent impervious surface area, and two indices, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). The results show that correlations between NDVI and LST are rather weak, but there is a strong positive correlation between percent ISA, NDBI and LST. This suggests that percent ISA, combined with LST, and NDBI, can quantitatively describe the spatial distribution and temporal variation of urban thermal patterns and associated land-use/land-cover (LULC) conditions.  相似文献   

4.
We develop a new algorithm, the simplified urban-extent (SUE) algorithm, to estimate the surface urban heat island (UHI) intensity at a global scale. We implement the SUE algorithm on the Google Earth Engine platform using Moderate Resolution Imaging Spectroradiometer (MODIS) images to calculate the UHI intensity for over 9500 urban clusters using over 15 years of data, making this one of the most comprehensive characterizations of the surface UHI to date. The results from this algorithm are validated against previous multi-city studies to demonstrate the suitability of the method. The dataset created is then filtered for elevation differentials and percentage of urban area and used to estimate the diurnal, monthly, and long-term variability in the surface UHI in different climate zones. The global mean surface UHI intensity is 0.85 °C during daytime and 0.55 °C at night. Cities in arid climate show distinct diurnal and seasonal patterns, with higher surface UHI during nighttime (compared to daytime) and two peaks throughout the year. The diurnal variability in surface UHI is highest for equatorial climate zone (0.88 °C) and lowest for arid zone (0.53 °C). The seasonality is highest in the snow climate zone and lowest for equatorial climate zone. While investigating the change in the surface UHI over a decade and a half, we find a consistent increase in the daytime surface UHI in the urban clusters of the warm temperate climate zone (0.04 °C/decade) and snow climate zone (0.05 °C/decade). Only arid climate zones show a statistically significant increase in the nighttime surface UHI intensity (0.03 °C/decade). Globally, the change is mainly seen during the daytime (0.03 °C/decade). Finally, the importance of vegetation differential between urban and rural areas on the spatiotemporal variability is examined. Vegetation has a strong control on the seasonal variability of the surface UHI and may also partly control the long-term variability. The complete UHI data are available through this website (https://yceo.yale.edu/research/global-surface-uhi-explorer) and allows the user to query the UHI of urban clusters using a simple interface.  相似文献   

5.
The urban heat island (UHI) is increasingly recognized as a serious, worldwide problem because of urbanization and climate change. Urban vegetation is capable of alleviating UHI and improving urban environment by shading together with evapotranspiration. While the impacts of abundance and spatial configuration of vegetation on land surface temperature (LST) have been widely examined, very little attention has been paid to the role of vertical structure of vegetation in regulating LST. In this study, we investigated the relationships between horizontal/vertical structure characteristics of urban tree canopy and LST as well as diurnal divergence in Nanjing City, China, with the help of high resolution vegetation map, Light Detection and Ranging (LiDAR) data and various statistical analysis methods. The results indicated that composition, configuration and vertical structure of tree canopy were all significantly related to both daytime LST and nighttime LST. Tree canopy showed stronger influence on LST during the day than at night. Note that the contribution of composition of tree canopy to explaining spatial heterogeneity of LST, regardless of day and night, was the highest, followed by vertical structure and configuration. Combining composition, configuration and vertical structure of tree canopy can take advantage of their respective advantages, and best explain variation in both daytime LST and nighttime LST. As for the independent importance of factors affecting spatial variation of LST, percent cover of tree canopy (PLAND), mean tree canopy height (TH_Mean), amplitude of tree canopy height (TA) and patch cohesion index (COHESION) were the most influential during the day, while the most important variables were PLAND, maximum height of tree canopy (TH_Max), variance of tree canopy height (TH_SD) and COHESION at night. This research extends our understanding of the impacts of urban trees on the UHI effect from the horizontal to three-dimensional space. In addition, it may offer sustainable and effective strategies for urban designers and planners to cope with increasing temperature.  相似文献   

6.
Mitigating urban heat island (UHI) effects, especially under climate change, is necessary for the promotion of urban sustainability. Shade is one of the most important functions provided by urban trees for mitigating UHI. However, the cooling effect of tree shade has not been adequately investigated. In this study, we used a simple and straightforward method to quantify the spatial and temporal variation of tree shade and examined its effect on land surface temperature (LST). We used the hillshade function in a geographic information system to quantify the spatiotemporal patterns of tree shade by integrating sun location and tree height. Relationships between shade and LST were then compared in two cities, Tampa, Florida and New York City (NYC), New York. We found that: (1) Hillshade function combining the sun location and tree height can accurately capture the spatial and temporal variation of tree shade; (2) Tree shade, particularly at 07:30, has significant cooling effect on LST in Tampa and NYC; and (3) Shade has a stronger cooling effect in Tampa than in NYC, which is most likely due to the differences in the ratio of tree canopy to impervious surface cover, the spatial arrangements of trees and buildings, and their relative heights. Comparing the cooling effects of tree shade in two cities, this study provides important insights for urban planners for UHI mitigation in different cities.  相似文献   

7.
The urban heat island (UHI) refers to the phenomenon of higher atmospheric and surface temperatures occurring in urban areas than in the surrounding rural areas. Mitigation of the UHI effects via the configuration of green spaces and sustainable design of urban environments has become an issue of increasing concern under changing climate. In this paper, the effects of the composition and configuration of green space on land surface temperatures (LST) were explored using landscape metrics including percentage of landscape (PLAND), edge density (ED) and patch density (PD). An oasis city of Aksu in Northwestern China was used as a case study. The metrics were calculated by moving window method based on a green space map derived from Landsat Thematic Mapper (TM) imagery, and LST data were retrieved from Landsat TM thermal band. A normalized mutual information measure was employed to investigate the relationship between LST and the spatial pattern of green space. The results showed that while the PLAND is the most important variable that elicits LST dynamics, spatial configuration of green space also has significant effect on LST. Though, the highest normalized mutual information measure was with the PLAND (0.71), it was found that the ED and PD combination is the most deterministic factors of LST than the unique effects of a single variable or the joint effects of PLAND and PD or PLAND and ED. Normalized mutual information measure estimations between LST and PLAND and ED, PLAND and PD and ED and PD were 0.7679, 0.7650 and 0.7832, respectively. A combination of the three factors PLAND, PD and ED explained much of the variance of LST with a normalized mutual information measure of 0.8694. Results from this study can expand our understanding of the relationship between LST and street trees and vegetation, and provide insights for sustainable urban planning and management under changing climate.  相似文献   

8.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

9.
城市热岛效应是当前城市气候与城市生态环境的研究热点。研究使用Landsat TM/ETM+遥感影像获取城市建成区信息和反演亮度温度,进而评价成都平原6个中等城市的热岛强度、热岛发育程度以及空间动态演变特征。研究发现,在"评价初期→评价中期→评价末期"过程中,成都平原6个中等城市的热岛强度前期增强、后期减弱;城市旧城区的热岛规模普遍减小,这说明,旧城区热环境有所改善,而城市扩展区的热岛规模普遍增大,是因城市扩展明显改变了地表自然环境,导致热岛效应出现,这与城市化进程的内在规律基本一致。绵阳等城市的研究成果表明,即使城市规模扩大,只要城市规划科学合理,并注重城市生态环境的保护,城市热岛效应也能得到有效缓解。  相似文献   

10.
热岛效应是城市化进程中产生的特有环境问题。基于Landsat TM/ETM+(1989、2001、2007、2013年)遥感影像完成哈尔滨地面亮温定量反演、标准化和等级划分等处理,并分析城市热岛空间分布特征和时空演变规律。基于地学信息图谱理论,定量分析24 a间热岛效应图谱信息变化特征,探究城市热岛格局的时空演变进程和形成机制,揭示城市化进程与热岛效应之间的响应关系。结果表明,随着哈尔滨城市化进程加速,4级热岛效应呈递增趋势,面积比例分别为4.36%、5.69%、6.29%和7.12%,主要分布在道外区和铁路沿线地带;植被和水体区域的地面温度较低,其边缘温度更低;反复变化型面积最大,后期变化型面积最小,面积比例分别为33.30%和7.30%。地学信息图谱分析可为城市热岛效应随城市化演变趋势提供准确、丰富的信息,对全面分析城市热岛的形成和发展具有重要的意义。  相似文献   

11.
Alteration in climatic pattern has resulted to a steady decline in quality of life and the environment, especially in and around urbanized areas. These areas are faced with increasing surface temperature arising mostly from human activities and other natural sources; hence land surface temperature has become an important variable in global climate change studies. In this paper, Landsat TM/ETM imagery acquired between 1997 and 2013 were used to extract ground brightness temperature and land use/land cover change in Kuala Lumpur metropolis. The main objective of this paper is to examine the effectiveness of quantifying UHI effects, in space and time, using remote sensing data and, also, to find the relationship between UHI and land use change. Four land use types (forest, farmland, built-up area and water) were classified from the Landsat images using maximum likelihood classification technique. The result reveals that Greater KL experienced an increase in average temperature from 312.641°K to 321.112°K which was quite eminent with an average gain in surface temperature of 8.4717°K. During the period of investigation (1997–2013), generally high temperature is been experienced mostly in concentrated built-up areas, the less concentrated have a moderate to intermediate temperature. Again, the study also shows that low and intermediate temperature classes loss more spatial extent from 2,246.89 Km2 to 1,164.53 Km2 and 6,102.42 Km2 to 3,013.63 Km2 and a gain of 4,165.963 Km2 and 307.098 Km2 in moderate and high temperature respectively from 1997 to 2013. The results of this study may assist planners, scientists, engineers, demographers and other social scientists concerned about urban heat island to make decisions that will enhance sustainable environmental practices.  相似文献   

12.
The surface fabric of urbanized areas, (i.e. its constituent land covers and land uses) plays an essential role in the generation of the urban/rural temperature differences, i.e. the Urban Heat Island (UHI) effect. Land surface information, derived from satellite imagery, and complementary information such as demographics can be used as the basis for an understanding of the atmospheric and surface thermal variations within cities. The results of comprehensive land surface characterizations of two major Canadian urban areas, the Greater Toronto Area and Ottawa-Gatineau, are described. Spatial information, including land cover fraction maps, land use and its historic changes, population density maps are compared with intra-urban surface temperature variations derived from satellite thermal imagery. Three aspects of the impacts of land cover and land use on urban land thermal characteristics are addressed, namely, (a) the relationships between surface temperature and subpixel land cover and population density (b) intra-city seasonal temperature variations and (c) the intensification of the urban heat island effect due to urban built-up land growth.  相似文献   

13.
An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study. The Moderate Resolution Imaging Spectroradiometer (MODIS)-based multispectral data were combined with the Visible Infrared Imager Radiometer Suite (VIIRS)-based nighttime light (NTL) data for robust extraction and mapping of urban built-up areas. The MODIS-based newly proposed Urban Built-up Index (UBI) was combined with NTL data, and the resulting Enhanced UBI (EUBI) was used as a single master image for global extraction of urban built-up areas. Due to higher variation of the EUBI with respect to geographical regions, a region-specific threshold approach was used to extract urban built-up areas. This research provided 500-m-resolution global urban built-up map of year 2014. The resulted map was compared with three existing moderate-resolution global maps and one high-resolution map in the United States. The comparative analysis demonstrated finer details of the urban built-up cover estimated by the resultant map.  相似文献   

14.
15.
袁策 《测绘科学》2007,32(6):84-85,32
针对居民地地图形状化简的一个方面——建筑物多边形的化简,通过对综合规则的研究和居民地几何特征的剖析,提出一种与比例尺相关的切割实现建筑物多边形化简的方法,在Visual Basic6.0环境下实现了该算法,试验结果表明此方法在保持街区的形态特征上效果较好。  相似文献   

16.
The Urban Heat Island (UHI) phenomenon, a typical characteristic on urban landscapes, has been recognised as a key driver to the transformation of local climate. Reliable retrieval of urban and intra-urban thermal characteristics using satellite thermal data depends on accurate removal of the effects of atmospheric attenuations, angular and land surface emissivity. Several techniques have been proposed to retrieve land surface temperature (LST) from coarse resolution sensors. Medium spatial resolution sensors like the Advanced Space-borne Thermal Emission and Reflection Radiometer and the Landsat series offer a viable option for assessing LST within urban landscapes. This paper reviews the theoretical background of LST estimates from the thermal infrared part of the electromagnetic spectrum, LST retrieval algorithms applicable to each of the commonly used medium-resolution sensors and required variables for each algorithm. The paper also highlights LST validation techniques and concludes by stipulating the requirements for LST temporal and spatial configuration.  相似文献   

17.
This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST.Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.  相似文献   

18.
城市空间热环境的遥感研究--热场结构及其演变的分形测量   总被引:16,自引:0,他引:16  
如何定量分析城市热环境(热场)结构及其演变特征是当前热环境遥感研究中的难点问题之一。本文将分形几何引入到对热场结构信息的定量研究中,针对城市热环境的结构特点设计出3种不同的分形计算模型,灰度曲面分形,剖面线分形和像元点分形。其中灰度曲面分形计算侧重揭示热场整体的分形特征,剖面线分形可用于对典型区域的热场结构信息变化的对比分析、像元点分形形计算则给出了像元热场变化梯度的定量描述,应用上述模型对1990年、1995年、1998年上海城市热环境的结构信息及其变化过程进行了分析。  相似文献   

19.
The creation of an accurate simulation of future urban growth is considered one of the most important challenges in urban studies that involve spatial modeling. The purpose of this study is to improve the simulation capability of an integrated CA-Markov Chain (CA-MC) model using CA-MC based on the Analytical Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both applied in Seremban, Malaysia, as well as to compare the performance and accuracy between the traditional and hybrid models. Various physical, socio-economic, utilities, and environmental criteria were used as predictors, including elevation, slope, soil texture, population density, distance to commercial area, distance to educational area, distance to residential area, distance to industrial area, distance to roads, distance to highway, distance to railway, distance to power line, distance to stream, and land cover. For calibration, three models were applied to simulate urban growth trends in 2010; the actual data of 2010 were used for model validation utilizing the Relative Operating Characteristic (ROC) and Kappa coefficient methods Consequently, future urban growth maps of 2020 and 2030 were created. The validation findings confirm that the integration of the CA-MC model with the FR model and employing the significant driving force of urban growth in the simulation process have resulted in the improved simulation capability of the CA-MC model. This study has provided a novel approach for improving the CA-MC model based on FR, which will provide powerful support to planners and decision-makers in the development of future sustainable urban planning.  相似文献   

20.
To tackle the problems arising due to rapid urbanization, the urban planners need relevant data base. Since the conventional methods of data acquisition and processing ate not cost and time effective, introduction of new techniques is necessary. Application of satellite remote sensing is an alternative. Ia this paper attempt has been made to find out the usefulness of visual interpretation technique of satellite remote sensing data in the selection of new residential site. SPOT 1 HRV 1 MLA (FCC) date has been used to map existing landuse/landcover of Hisar town and its environs. Based on existing landuse/lsndcover conditions and evaluation of various suitability parameters like physiography, slope, drainage, availability of drinking water and wind direction, a new residential site has been selected. This study may be useful to the urban planners in the preparation of a comprehensive plan Df the town.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号