首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mineralogical and chemical compositions of meteorites from the Motta di Conti, Vercelli, Italy, shower (February 29, 1868) have been determined. Microprobe analyses, of olivine (Fa19,6) and orthopyroxene (Fs17,8), as well as the bulk chemical composition, particularly the ratios of SiO2/MgO (1.50), Fe°/Ni° (11.03), Fetotal/SiO2 (0.81), Fe°/Fetotal (0.70) and the content of Fetotal (28.60%) classify the meteorite as an H-group chondrite. The percentage of total metallic nickel-iron (22.06%) is somewhat higher than the average in H-group chondrites. The texture of our stone shows evidence of metamorphism. The integration between matrix and chondrules is advanced and may suggest a high petrographic grade, but the identification of several microscopic features (e.g. small grains of monoclinic twinned pyroxene, FeNi-FeS intergrowths, globules and mosaic) leads to the conclusion that a variety of petrographic types (4–6) are present. Metamorphic equilibration in chondrites is discussed and a preliminary hypothesis for H4–6 chondrites is suggested.  相似文献   

2.
The Putinga, Rio Grande do Sul, chondrite (fall, August 16, 1937), consists of major olivine (Fa24.8), orthopyroxene (Fs21.3), and metallic nickel-iron (kamacite, taenite, and plessite); minor maskelynite (Ab81.0An12.4Or6.6) and troilite; and accessory chromite (Cm79.0Uv8.2Pc1.8Sp11.0) and whitlockite. Mineral compositions, particularly of olivine and orthorhombic pyroxene, as well as the bulk chemical composition, particularly the ratios of Fe°/Ni° (5.24), Fetotal/SiO2 (0.58), and Fe°/Fetotal (0.27), and the contents of Fetotal (22.42%) and total metallic nickel-iron (7.25%) classify the meteorite as an L-group chondrite. The highly recrystallized texture of the stone, with well-indurated, poorly discernible chondrules; xenomorphic, well-crystallized groundmass olivine and pyroxene; and the occurrence of poikilitic intergrowth of olivine in orthopyroxene suggest that Putinga belongs to petrologic type 6. Maskelynite of oligoclase composition was formed by solid state shock transformation of previously existing well-crystallized plagioclase at estimated shock pressures of about 250–350 kbar. Thus, recrystallization (i.e., formation of well-crystallized oligoclase) must have preceded shock transformation into maskelynite.  相似文献   

3.
Inman (find, 1966) is a single, relatively unweathered stone of 7.25 kg that contains fresh metal and only few weathering products away from fractures. It has a pronounced chondritic texture, with 38 vol % of the meteorite being made up of chondrules of virtually all textural types. The recalculated bulk analysis, particularly the ratios of Fetotal/SiO2 (0.46), Fe°/Fetotal (0.35), and Fe°/Ni° (6.67) and the contents of Fetotal (19.45%) and metallic nickel-iron (7.94%), indicate that Inman is an L-group chondrite. The pronounced chondritic texture; the compositional variabilities of olivine, pyroxene, chromite, and ilmenite; the presence of a fine-grained, nearly opaque matrix, glass and twinned monoclinic low-Ca pyroxene indicate that the chondrite belongs to petrologic type 3.  相似文献   

4.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   

5.
We performed a petrologic, geochemical, and oxygen isotopic study of the lowest FeO ordinary chondrite (OC), Yamato (Y) 982717. Y 982717 shows a chondritic texture composed of chondrules and chondrule fragments, and mineral fragments set in a finer grained, clastic matrix, similar to H4 chondrites. The composition of olivine (Fa11.17 ± 0.48 (1σ)) and low‐Ca pyroxene (Fs11.07 ± 0.98 (1σ)Wo0.90 ± 0.71(1σ)) is significantly more magnesian than those of typical H chondrites (Fa16.0‐20, Fs14.5‐18.0), as well as other known low‐FeO OCs (Fa12.8‐16.7; Fs13‐16). However, the bulk chemical composition of Y 982717, in particular lithophile and moderately volatile elements, is within the range of OCs. The bulk siderophile element composition (Ni, Co) is within the range of H chondrites and distinguishable from L chondrites. The O‐isotopic composition is also within the range of H chondrites. The lack of reduction textures indicates that the low olivine Fa content and low‐Ca pyroxene Fs content are characteristics of the precursor materials, rather than the result of reduction during thermal metamorphism. We suggest that the H chondrites are more compositionally diverse than has been previously recognized.  相似文献   

6.
The Conquista chondrite consists of major olivine, low-Ca pyroxene (both ortho- and twinned clino-), troilite and metallic nickel-iron; minor glassy to microcrystalline material and pigeonite; and accessory chromite, high-Ca clinopyroxene and hydrous ferric oxides that formed by terrestrial weathering of metallic nickel-iron. Results of microscopic, electron microprobe, and bulk chemical studies, particularly the compositions of olivine (Fa17.2) and low-Ca pyroxene (Fs15.4); the contents of metallic nickel-iron (18.5%) and total iron (25.83%); and the ratios of Fe°/Fetotal (0.64), Fe°/Ni° (9.59) and Fetotal/SiO2 (0.69) indicate H-group classification. The pronounced, well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite, glassy to microcrystalline interstitial material rich in alkalis and SiO2, and of twinned low-Ca clinopyroxene suggest that Conquista is of petrologic type 4.  相似文献   

7.
In April 1969, the chondrite was accidentally found in the side wall of the vegetable storage excavated at Shibayama-machi, Sanbu-gun, Chiba-ken, Japan, by Mr. A. Ishii and his grandson, Mr. S. Ito. The chondrite named Shibayama has been weathered thoroughly for a long period of burial underground. The bulk chemical composition, especially total Fe (21.41%) and ratios of Fetotal/SiO2(0.557), SiO2/MgO (1.59) and molar composition of olivine (Fa23) and pyroxene (Fs22) as well as mineral composition, indicate that Shibayama is a typical olivine-hypersthene chondrite. If the oxidized Fe is assumed only from metallic Fe, the original metallic Fe (7.75%) and Femetal/Fetotal(0.361) also support the above conclusion. From the well-recrystallized texture, indistinct and obliterated chondrule-matrix boundary, homogeneous composition of olivine and pyroxene, absence of igneous glass, and interstitial and well-developed plagioclase, this chondrite could be classified in petrologic type 6. Mosaic texture, kink bands, undulatory extinction of silicate grains and maskelynitization of plagioclase indicate that Shibayama suffered from a heavy shock effect, as is seen in other L-6 group chondrites.  相似文献   

8.
Abstract— A new, large, ordinary chondrite has been recovered from near the strewn field of Gibeon iron meteorites in Namibia, and is designated Korra Korrabes, after the farm property on which the specimens were found in 1996–2000. A total of ~140 kg of related specimens were recovered, including a large stone of 22 kg, and hundreds of smaller objects between 2 g and several kilograms. Cut surfaces indicate that Korra Korrabes is a breccia, containing 10–20% of light grey‐brown clasts up to 3 cm across in a uniform, darker grey‐brown host that contains abundant round chondrules, and irregular grains of Fe‐Ni metal and troilite up to 1 cm across. The vast majority of the stone is unshocked, although some clasts show mild shock features (stage S2), and one chondrule fragment is moderately shocked (stage S3). Weathering grade varies between W1 and W2. Microprobe analyses indicate variable compositions of olivine (Fa13.8–27.2, n = 152, percent mean deviation = 7.82%) and low‐Ca pyroxene (multiply twinned clinobronzite, Fs8.4–27.8, n = 68). There is excellent preservation of magmatic textures and mineralogy within many chondrules, including normally zoned olivine (Fa13.8–18.9) and low‐Ca pyroxene (Fs0.2–20.9) phenocrysts, and abundant glass, some of whose compositions are unusually alkaline (Na2O + K2O = 13.6–16.3 wt%) and Ca‐deficient (CaO = 0‐0.75 wt%), seemingly out of magmatic equilibrium with associated clinoenstatite or high‐Al calcic clinopyroxene crystals. Textural and mineralogical features indicate that Korra Korrabes is an H3 chondrite breccia, which represents the largest and least equilibrated stony meteorite yet recovered from Namibia; it is now one of the four largest unequilibrated ordinary chondrites worldwide.  相似文献   

9.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

10.
Abstract— Petrographic and mineralogic studies of amoeboid olivine inclusions (AOIs) in CO3 carbonaceous chondrites reveal that they are sensitive indicators of parent‐body aqueous and thermal alteration. As the petrologic subtype increases from 3.0 to 3.8, forsteritic olivine (Fa0–1) is systematically converted into ferroan olivine (Fa60–75). We infer that the Fe, Si and O entered the assemblage along grain boundaries, forming ferroan olivine that filled fractures and voids. As temperatures increased, Fe+2 from the new olivine exchanged with Mg+2 from the original AOI to form diffusive haloes around low‐FeO cores. Cations of Mn+2, Ca+2 and Cr+3 were also mobilized. The systematic changes in AOI textures and olivine compositional distributions can be used to refine the classification of CO3 chondrites into subtypes. In subtype 3.0, olivine occurs as small forsterite grains (Fa0–1), free of ferroan olivine. In petrologic subtype 3.2, narrow veins of FeO‐rich olivine have formed at forsterite grain boundaries. With increasing alteration, these veins thicken to form zones of ferroan olivine at the outside AOI margin and within the AOI interior. By subtype 3.7, there is a fairly broad olivine compositional distribution in the range Fa63–70, and by subtype 3.8, no forsterite remains and the high‐Fa peak has narrowed, Fa64–67. Even at this stage, there is incomplete equilibration in the chondrite as a whole (e.g., data for coarse olivine grains in Isna (CO3.8) chondrules and lithic clasts show a peak at Fa39). We infer that the mineral changes in AOI identified in the low petrologic types required aqueous or hydrothermal fluids whereas those in subtypes ?3.3 largely reflect diffusive exchange within and between mineral grains without the aid of fluids.  相似文献   

11.
Abstract– High pressure phases majorite, possibly majorite‐pyropess, wadsleyite, and coesite are present in the matrix and in barred olivine fragments in the Gujba CB chondrite. Grossular‐pyrope was also observed in some small inclusions. The CB chondrites are metal‐rich meteorites with characteristics that sharply distinguish them from other chondrite groups. All of the CB chondrites contain impact melt regions interstitial to their chondrules, fragments and metal and a major impact event (or events), on the CB chondrite parent body is clearly a significant stage in its history. We studied three areas interstitial to chondrules and metal in the Gujba CBa chondrite. From Raman spectra, the barred olivine fragments and matrix in these regions have various combinations of olivine and low‐Ca pyroxene, as well as majorite garnet (Mg4Si4O12), a phase that forms by high‐pressure transformation of low‐Ca pyroxene and wadsleyite, a high pressure product of olivine. Compositions of the majorite suggest both majorite and majorite‐pyrope solid solution may be present. The mineral assemblage of majorite and wadsleyite suggest minimum shock pressures and temperatures of ~19 GPa and ~2000 °C, respectively. The occurrences of high pressure phases are variable from one area to another, on the scale of millimeters or less, suggesting heterogeneous distribution of shock and/or back transformation to low pressure polymorphs throughout the meteorite. The high pressure phases record a high temperature–pressure impact event that is superimposed onto, and thus postdates formation of, the chondrules and other components in the CB chondrites. The barred chondrules and metal in the CB chondrites are primary materials formed prior to the impact event either generated in an earlier planetesimal scale impact event or in the nebula.  相似文献   

12.
The Kamiomi, Sashima-gun (Iwai-shi), Ibaraki-ken, Japan, chondrite (observed to fall in spring, during the period 1913–6), consists of olivine, orthopyroxene, nickel-iron and troilite with minor amount of plagioclase, clinopyroxene, apatite and chromite. The average molar composition of olivine (Fa19) and orthopyroxene (Fs17) indicates that Kamiomi is a typical olivine bronzite chondrite. From the well-recrystallized texture, the presence of poorly-definable chondrules, homogeneous composition of olivine and absence of glass, this chondrite could be classified in petrologic type 5. The bulk chemical composition, especially, total Fe (27.33%) and metallic Fe (17.00%) as well as Fetotal/SiO2(0.72), Femetal/Fetotal (0–633) and SiO2/MgO (1.59) support the above conclusion. Coexistence of heavily-shocked olivine grains in the matrix composed of olivines and pyroxenes which suffered from light to moderate shock effect suggest that impacting phenomena, small-scaled but locally strong, occurred on the Kamiomi parent body.  相似文献   

13.
Among a collection of meteorites from the area of the Tenham shower (Queensland, Australia) was a 27 kg stone which proved to be different from the other Tenham stones. It is a bronzite, H4, chondrite, the principal minerals being olivine (average composition Fa 18.8), clinobronzite and bronzite (average composition Fs16.4), nickel-iron, and troilite; it is considerably weathered, much of the nickel-iron being converted to limonite. It has a highly chondritic structure, with devitrified glass within the chondrules, and without visible plagioclase. This meteorite was found about 1950 near the Hammond Downs station, hence the name; its coordinates are lat 25° 28′ S., long 142° 48′ E.  相似文献   

14.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

15.
Here, the petrological features of numerous primitive achondrites and highly equilibrated chondrites are evaluated to review and expand upon our knowledge of the chondrite–achondrite transition, and primitive achondrites in general. A thermodynamic model for the initial silicate melting temperature and progressive melting for nearly the entire known range of oxidation states is provided, which can be expressed as Tm = 0.035Fa2?3.51Fa + 1109 (in °C, where Fa is the proportion of fayalite in olivine). This model is then used to frame a discussion of textural and mineralogical evolution of stony meteorites with increasing temperature. We suggest that the metamorphic petrology of these meteorites should be based on diffusive equilibration among the silicate minerals, and as such, the chondrite–achondrite transition should be defined by the initial point of silicate melting, not by metal–troilite melting. Evidence of silicate melting is preserved by a distinctive texture of interconnected interstitial plagioclase ± pyroxene networks among rounded olivine and/or pyroxene (depending on ?O2), which pseudomorph the former silicate melt network. Indirectly, the presence of exsolution lamellae in augite in slowly cooled achondrites also implies that silicate melting occurred because of the high temperatures required, and because silicate melt enhances diffusion. A metamorphic facies series is defined: the Plagioclase Facies is equivalent to petrologic types 5 and 6, the Sub‐calcic Augite Facies is bounded at lower temperatures by the initiation of silicate melting and at higher temperatures by the appearance of pigeonite, which marks the transition to the Pigeonite Facies.  相似文献   

16.
On February 13, 2023, a huge fireball was visible over Western Europe (fireball event 2023 CX1). After the possible strewn field was calculated, the first of several recovered samples, with a mass of about 100 g, was discovered just 2 days after the fireball event on the ground of the village of Saint-Pierre-le-Viger. Meanwhile, more than 60 samples with a total mass of more than 1 kg were recovered and a piece of one of these is studied here. The fall occurred 220 years after the historic meteorite fall of L'Aigle on April 26, 1803, <120 km south. L'Aigle is the closest meteorite fall to Saint-Pierre-le-Viger and belongs to the same chondrite group. Both meteorites are breccias containing only clasts of high metamorphic degree (type 5 and type 6). Since only 20% of the L chondrites are breccias this coincidence is remarkable. As just mentioned, both samples studied from these rocks in this work are ordinary chondrite breccias and consist of equilibrated and recrystallized lithologies of petrologic type 6. The brecciated texture in L'Aigle, resulting in a remarkable light–dark structure, is more pronounced than the brecciated features in Saint-Pierre-le-Viger, from which also type 5 fragments have been reported. The compositions of low-Ca pyroxene and olivine grains in Saint-Pierre-le-Viger (Fs21.2 and Fa23.4, respectively) clearly require an L-group classification. L'Aigle was classified as an L6 breccia in the past, and this has now been confirmed by new data on low-Ca pyroxene and olivine (Fs20.7 and Fa23.8, respectively). Saint-Pierre-le-Viger contains local thin shock veins, and both meteorites are moderately shocked. Most olivines in the studied samples have planar fractures, but the estimated abundance of mosaicized olivines of 30%–40% among the large grains require a S4 shock classification. Oxygen isotope and bulk chemical data of Saint-Pierre-le-Viger certainly support the L chondrite classification. Bulk spectral data of Saint-Pierre-le-Viger are dominated by silicate minerals, that is, Fe-bearing low-Ca pyroxene, olivine, and plagioclase. Isotopic, chemical, and spectral data of the L'Aigle meteorite are shown for comparison and are very similar, providing additional circumstantial evidence of Saint-Pierre-le-Viger's L chondritic nature.  相似文献   

17.
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions.  相似文献   

18.
Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group   总被引:1,自引:0,他引:1  
Abstract— Pecora Escarpment (PCA)91002 is a light/dark-structured chondrite breccia related to Carlisle Lakes and Rumuruti; the meteorite contains ~10–20 vol% equilibrated (type ?5 and ?6) clasts within a clastic groundmass, much of which was metamorphosed to type-3.8 levels. The olivine compositional distribution forms a tight cluster that peaks at Fa38–40; by contrast, low-Ca pyroxene compositions are highly variable. Opaque phases identified in PCA91002 and its paired specimen, PCA91241, include pyrrhotite, pentlandite, pyrite, chromite, ilmenite, metallic Cu and magnetite. The majority of the rock is of shock stage S3-S4; there are numerous sulfide-rich shock veins and 50-μm plagioclase melt pockets. Instrumental neutron activation analysis shows that, unlike Carlisle Lakes and ALH85151, PCA91002 exhibits no Ca enrichment or Au depletion; because PCA91002 is relatively unweathered, it seems probable that the Ca and Au fractionations in Carlisle Lakes and ALH85151 were caused by terrestrial alteration. The Rumuruti-like (formerly Carlisle-Lakes-like) chondrites now include eight separate meteorites. Their geochemical and petrographic similarities suggest that they constitute a distinct chondrite group characterized by unfractionated refractory lithophile abundances (0.95 ± 0.05x CI), high bulk Δ17O, a low chondrule/groundmass modal abundance ratio, mean chondrule diameters in the 400 ± 100 μm range, abundant NiO-bearing ferroan olivine, sodic plagioclase, titanian chromite, abundant pyrrhotite and pentlandite and negligible metallic Fe-Ni. We propose that this group be called R chondrites after Rumuruti, the only fall. The abundant NiO-bearing ferroan olivine grains, the occurrence of Cu-bearing sulfide, and the paucity of metallic Fe-Ni indicate that R chondrites are highly oxidized. It is unlikely that appreciable oxidation took place on the parent body because of the essential lack of plausible oxidizing agents (e.g., magnetite or hydrated silicates). Therefore, oxidation of R chondrite material must have occurred in the nebula. A few type-I porphyritic olivine chondrules containing olivine grains with cores of Fa3–4 composition occur in PCA91002; these chondrules probably formed initially as metallic-Fe-Ni-bearing objects at high nebular temperatures. As temperatures decreased and more metallic Fe was oxidized, these chondrules accreted small amounts of oxidized material and were remelted. The ferroan compositions of the >5-μm olivine grains in the R chondrites reflect equilibration with fine-grained FeO-rich matrix material during parent body metatnorphism.  相似文献   

19.
The new Brazilian chondrite, Lavras do Sul, was found in 1985 at Lavras do Sul, Rio Grande do Sul State-Brazil (33°30′48″S; 53°54′65″W). It consists of a single mass weighing about 1 kg, covered by a black fusion crust with grayish interior. Four polished thin sections were prepared from a slice weighing 67 g on deposit at the Museu Nacional/UFRJ. It consists mostly of chondrules and chondrule fragments dispersed in a recrystallized matrix. Most chondrules are poorly defined and range in size from 300 to 2,000 μm, although some of them show distinct outlines, particularly when viewed under cross-polarized transmitted and reflected light. The texture of chondrules varies from non-porphyritic (e.g., barred-olivine, radial-pyroxene) to porphyritic ones (e.g., granular olivine as well as olivine-pyroxene). The meteorite contains mainly olivine (Fa24.9), low-Ca pyroxene (Fs22.6) and metal phases, with minor amounts of plagioclase, chromite and magnetite. Mössbauer Spectroscopy studies indicate that the metal phase is kamacite, tetrataenite and antitaenite. Veins of secondary iddingsite crosscut the thin section and some ferromagnesian silicates. The chemical composition indicates that Lavras do Sul is a member of the low iron L chondrite group. The poorly delineated chondritic texture with few well-defined chondrules, the occurrence of rare clinopyroxene and plagioclase (and maskelynite) with apparent diameters ranging from 5 to 123 μm led us to classify Lavras do Sul as an equilibrated petrologic type 5. The shock features of some minerals suggest a shock stage S3, and the presence of a small amount of secondary minerals such as iddingsite and goethite, a degree of weathering W1. The meteorite name was approved by the Nomenclature Committee (Nom Com) of the Meteoritical Society (Meteoritic Bulletin Nº99).  相似文献   

20.
Abstract We report a new chondrite that fell in Hashima City in central Japan sometime during the period 1868–1912. The chondrite weighs 1110.64 g and exhibits distinct chondritic structure. Chondrules occupy 24 vol% of the stone and consist of olivine (average Fa17,8), low-Ca pyroxene (average Fs15,8 Wo0.9), devitrified glass and lesser amounts of oligoclase (ca. Ab80Or4), kamacite, taenite, troilite and chromian spinel. Matrix occupying 76 vol% of the stone consists of olivine, low-Ca pyroxene, kamacite, taenite, troilite, cryptocrystalline minerals and lesser amounts of chromian spinel and chlorapatite. Matrix minerals have the same compositions as those in chondrules. Mineral chemistry, bulk chemistry and magnetic properties indicate that Hashima is an H-group chondrite. Well-defined chondrules, scarcely recrystallized oligoclase and relatively small variations of olivine and low-Ca pyroxene compositions indicate that Hashima is of petrologic type 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号