首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wind speed is an important meteorological variable for various scientific communities. In this study, numerical mesoscale simulations were performed over the Republic of Korea in 2006, to produce wind information distributed homogeneously with space. Then, an attempt was made to statistically correct the simulated nearsurface wind speed using remotely sensed surface observations. The weak wind season (WWS, from May to October) and strong wind season (SWS, from November to April) were classified on the basis of the annual mean wind speed. Although the spatial features and monthly variation pattern of the near-surface wind speed were reasonably simulated in the Weather Research and Forecasting (WRF) model, the simulations overestimated the observed values. To correct the simulated wind speeds, a regression-based statistical algorithm with different constants and coefficients for WWS and SWS was developed using match-up datasets of wind observations and satellitederived variables (land surface temperature and normalized difference water index). The corrected wind speeds showed reasonable performance for both WWS and SWS with respect to observed values. The monthly variation in the corrected wind speeds over the Republic of Korea also matched better with observations throughout the year, within a monthly bias range of approximately ± 0.2 m s?1. The proposed algorithm using remotely sensed surface observations may be useful for correcting simulated near-surface wind speeds and improving the accuracy of wind assessments over the Republic of Korea.  相似文献   

2.
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer(MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.  相似文献   

3.
A quantative transposition model is introduced which determines hourly wind speeds in a representative tropical region (Central Sudan). The model consists of two parts. Firstly, a local boundary-layer model, based on the energy balance equation and the Businger-Dyer equations, is used to compute the average diurnal cycle of various characteristic boundary-layer parameters. Secondly, a horizontal transposition method is introduced to calculate wind speed behaviour at an arbitrary station from that at a reference station. This method is based on assumed spatial constancy of the turbulence parameter u * in the period November–April in a region of about (700 × 800) km2 in Central Sudan. The constancy of u * is concluded from the very stationary character of the climate. Model-computed hourly wind speeds are consistent with the potential wind speeds (at 10 m over open country) calculated from the measured data, and provide better local wind estimates than the conventional procedure which assumes constant regional hourly wind speeds.  相似文献   

4.
Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea–land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air–sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1–5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.  相似文献   

5.
Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model’s basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.  相似文献   

6.
Abstract

Processes that regulate the central pressure and maximum wind speeds of tornado‐like vortices are explored with an axisymmetric numerical model. The model consists of a rotating cylinder of fluid enclosed within rigid boundaries. The momentum diffusivity is a fixed function of height. In the rotating reference frame, relative motion is induced by a buoyancy force in the vicinity of the rotation axis, leading to the formation of a central vortex. The work done by the central buoyancy force on a parcel rising along the axis defines theoretical and empirical wind speed bounds on both the updraft and the low‐level vortex. Certain processes are found that allow for the vortex to greatly exceed this wind speed bound, or the so‐called thermodynamic speed limit; however, in most of the parameter space the vortex wind speeds are close to the thermodynamic speed limit.

The most effective limit‐breaking process involves a supercritical end‐wall vortex with an axial jet. In steady state, the supercritical vortex sustains wind speeds 2.0 times the speed limit. A transient end‐wall vortex, with the vortex breakdown travelling rapidly downwards toward the surface, is able to achieve wind speeds 5.0 times the speed limit. Warming of the subsiding vortex core past the vortex breakdown increases the maximum steady‐state azimuthal wind speed by about 20% from what it would be otherwise. Axial momentum diffusion is not found to significantly enhance the surface pressure deficit in any of the simulations.  相似文献   

7.
Summary In the present paper, an attempt is made for generalized the atmospheric diffusion operator. This can be accomplished by employing the realizability procedure, to identify a surface operator, that ensures self-adjointness’ of the atmospheric diffusion operator. The dispersion modeling in low wind speeds assumes importance because of the high frequency of occurrence and episodic nature of these poor diffusion conditions. A steady-state mathematical model for hermitized model has been calculated for the dispersion of air pollutants in low winds by taking into account the diffusion in the three coordinate directions and advection along the mean wind. The eddy diffusivities have been parameterized in terms of downwind distance for near source dispersion (Arya, 1995). The constants involved in this parameterization are the squares of intensities of turbulence. An analytical solution for resulting advection-diffusion equation with the physically relevant boundary conditions has been obtained. The solution has been used to simulate the field tracer data collected at IIT Delhi in low wind convective conditions.  相似文献   

8.
Abstract

The wind climate of the mountainous terrain in the southern Yukon is simulated using the Wind Energy Simulation Toolkit (WEST) developed by the Recherche en Prévision Numérique (RPN) group of Environment Canada and is compared to measurements in the field. WEST combines two models that operate at different spatial scales. The Mesoscale Compressible Community (MC2) model is a mesoscale numerical weather prediction model that produces simulations over large domains of the order of a thousand kilometres. The MC2 model uses long‐term synoptic scale wind climate data from the analysis of radiosonde and other observations to simulate mean wind fields at tens of metres above the ground using a horizontal resolution of a few kilometres. The mesoscale results are used as input to MS‐Micro/3 (Mason and Sykes (1979) version of the Jackson and Hunt (1975) model version for microcomputers/3‐dimensional; MS‐Micro hereafter), a more computer‐efficient, microscale model with simpler linearized momentum equations and a domain restricted to a few tens of kilometres with horizontal grid sizes of tens or hundreds of metres. MS‐Micro provides wind field results at specific wind generator hub heights (typically 30 to 50 m above ground level (AGL)) which are of interest to researchers and developers of wind farms.

WEST shows relatively strong correlations between its simulated long‐term mean wind speed and the measurements from ten wind energy monitoring stations. However, in the mountainous terrain of the Yukon, WEST tends to predict wind speeds which are about 40% too high. The model also produces erroneous wind directions and some were perpendicular to valley orientations. The most likely cause of the wind speed and direction errors is the substantially modified 5‐km grid‐spaced mesoscale terrain used in MC2. The WEST simulation was also found to double the wind speeds observed at airport stations and there was poor correlation between the simulated and observed wind speeds.

The bias in the model could be attributed to a number of factors, including the use of smoothed topography by the model, the discrepancy between the neutral atmosphere assumed in MS‐Micro and the normally observed stable atmosphere, the application of MS‐Micro to every third grid point of the MC2 output, abnormally high sea level wind speeds in the input climate data for MC2, and a certain degree of disagreement between the land surface characteristics used in the model and those found in the field.

At comparatively low computer cost, WEST predicts a wind climate map that compares favourably to the wind measurements made in several locations in the Yukon. However, the problem of the modified terrain in the mountainous regions is the most pressing problem and needs to be addressed before WEST is used in the mountainous regions of Canada.  相似文献   

9.
Data on the relationship of the surface wind to the geostrophic wind at Porton Down, Salisbury Plain, are presented for various stability conditions and analysed in the light of the Rossbynumber similarity theory. For near-neutral conditions, the geostrophic drag coefficients for geostrophic wind speeds 5 to 15 m s-1 are close to those found by other workers but at higher speeds the values are low. Comparisons of geostrophic and radar wind speeds for ⋍900-m height, suggest that undetectably small mean cyclonic curvatures of the trajectories of the air are responsible for this departure. A value of the geostrophic drag coefficient for the open sea at wind speeds around 8 m s-1 (neutral conditions) is deduced from recent observations of the drag in relation to the surface wind, combined with the ratios of 900-mb radar wind to surface wind obtained from the North Atlantic weather ship data tabulations of Findlater et al. (1966).  相似文献   

10.
The physics of the interaction of electromagnetic waves with the ocean surface has been an active area of research for a number of years. We present here the results of satellite and aircraft experiments to investigate the ability of active microwave radars to infer surface wind speeds remotely. Data obtained from the recent National Aeronautics and Space Administration (NASA) Skylab experiment are compared with surface wind speeds measured by low-flying aircraft and ships-of-opportunity and found to give useful estimates of the oceanic wind field. We also investigate the influence of varying wave height on radar measurements of wind speed by measuring the backscattering cross-section for constant wind speed but variable wave conditions. We conclude that this effect is of little importance.  相似文献   

11.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

12.
An investigation of the long-term variability of wind profiles for wind energy applications is presented. The observations consists of wind measurements obtained from a ground-based wind lidar at heights between 100 and 600 m, in combination with measurements from tall meteorological towers at a flat rural coastal site in western Denmark and at an inland suburban area near Hamburg in Germany. Simulations with the weather research and forecasting numerical model were carried out in both forecast and analysis configurations. The scatter between measured and modelled wind speeds expressed by the root-mean-square error was about 10 % lower for the analysis compared to the forecast simulations. At the rural coastal site, the observed mean wind speeds above 60 m were underestimated by both the analysis and forecast model runs. For the inland suburban area, the mean wind speed is overestimated by both types of the simulations below 500 m. When studying the wind-speed variability with the Weibull distribution, the shape parameter was always underestimated by the forecast compared to both analysis simulations and measurements. At the rural coastal site although the measured and modelled Weibull distributions are different their variances are nearly the same. It is suggested to use the shape parameter for climatological mesoscale model evaluation. Based on the new measurements, a parametrization of the shape parameter for practical applications is suggested.  相似文献   

13.
Abstract

Observations of the motion of ocean surface drifters are used to evaluate numerical simulations of surface currents in the region of Queen Charlotte Sound on the West Coast of Canada. More than 30 surface Argos drifters were deployed in the spring and summer of 1995, revealing daily average currents of 10 to 40 cm s–1 near the coast of Vancouver Island in summer, and less than 10 cm s–1 in mid‐sound. Wind observations in this region are provided by a network of weather buoys. Comparison of daily average drifter velocities and winds shows that the drifters moved at 2 to 3% of the wind speed, and at about 30 degrees to the right of the wind.

A complex transfer function is computed between daily wind and drifter vectors using least squares techniques. The ratio of variance in the least squares residual currents to the variance of observed drifter currents is denoted γ2. A percent goodness‐of‐fit is defined as g(γ2) = 100(1 – γ2), and is 42% for the case of daily winds and drifter currents. Drifter‐measured currents are compared with two numerical simulations of surface currents: Fundy5, a steadystate baroclinic model based on historical water property measurements in summer, and the Princeton Ocean Model (POM), a prognostic, baroclinic model forced by the measured winds. Fundy5 by itself provides a goodness‐of‐fit of only 3%, whereas POM has g(γ2) = 42%. The combination of Fundy5 plus daily wind gives g(γ2) = 43%. Although the prognostic model performs only as well as the winds by themselves, it simulates the near shore currents more accurately and reproduces the speeds and veering in the surface Ekman layer on average without bias. Residual currents unexplained by POM are likely due to advection of water masses into this region and horizontal inhomogeneities in the density field that are not input to the model, as well as to Stokes drift of wind waves and to net Lagrangian tidal motion not represented by the model.  相似文献   

14.
1. Introduction Armijo (1969) proposed the three-dimensional wind retrieved equations using multiple-Doppler weather radar network in Cartesian space. There are many sources of error for recovering 3D wind using these equations. These factors include advection and turbulence in the weather system, the error of the empirical relationship between the radar reflectivity factor and the terminal fall velocity of the precipita- tion particle, integrating the air mass continuity equa- tion (problem …  相似文献   

15.
笛卡儿坐标系的双多普勒天气雷达三维风场反演技术   总被引:27,自引:9,他引:27  
周海光  张沛源 《气象学报》2002,60(5):585-593
文中研究了笛卡尔坐标系下双多普勒天气雷达三维风场反演技术 ,提出了包括雷达原始资料的预处理 ,空间插值以及可靠性检验的新方法 ,提高了反演结果的可信度和精确度。使用模拟的双多普勒雷达体扫资料进行了反演试验 ,结果表明 :本文的方法能够比较真实地反映风场的三维结构 ,可以用于真实风场的反演。  相似文献   

16.
利用WRF模式分别对沿海及山地条件下风电场风速进行高分辨数值模拟,并对其误差特征进行分析,结果表明:1)WRF模式对复杂地形条件下的风速模拟性能良好,模拟值较好地体现天气尺度的周期变化;2)沿海及山地条件下模拟与观测的误差特征各不相同。模式静态数据未能显现沿海的小岛,并且低估了山地测风塔所在的海拔,导致沿海平均模拟风速偏大,山地平均模拟风速偏小;3)分析不同风向的归一化均方根误差,沿海陆风情况下,下垫面相对复杂,误差明显增大;沿海海风情况下,下垫面均一,误差明显减小;4)仅作单个风电场周边数百平方千米的模拟,采用一台12核的服务器进行WRF模式的并行计算可满足48 h短期预测的时效性。仅仅提高模拟的网格分辨率,并不一定能提升模拟的准确性。  相似文献   

17.
对2017年春季黑龙江省大、小兴安岭林区的6个代表站点10 m风场进行降尺度分析,并结合观测数据对比分析了WRF模式和CALMET降尺度模式的10 m风速、风向预报结果。结果表明:两模式逐小时风速预报与观测的相关系数为0.5-0.7,且随着风速的增加,模式的预报准确率逐渐提高,夜间的风速预报偏差较大,进入白天后,偏差明显减小。WRF模式对风速变化趋势的预报效果优于CALMET模式,与观测的风速相关性更高,而CALMET模式对较大风速的预报效果优于WRF模式。在风向预报方面,WRF和CALMET的风向模拟与观测风向均有较好的一致性,模式预报准确率较高的两个风向也刚好对应各站的盛行风向。同时,本文用回归方法对日平均风速进行订正发现,订正后各站的日平均风速预报准确率平均提高了50%,具有较好的业务应用价值。  相似文献   

18.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   

19.
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models. In this study, buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi (2014). Three drag coefficient schemes, which make the drag coefficient increase, level off, and decrease, respectively, are considered. The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model, though with relatively weaker sea surface cooling (SSC) compared to that captured by buoy observations, which led to relatively higher heat flux and thus a stronger typhoon. Different from previous studies, for a moderate typhoon, the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC, reasonable ratio of latent and sensible heat exchange coefficients, and an obvious reduction in the overestimated surface heat flux among all experiments. Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes. Only when SSC differs indistinctively (<0.4°C) between the coupled simulations, heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed. The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.  相似文献   

20.
基于台风边界层的最新观测和研究成果,提出了最大风速半径、边界层风速比、拖曳系数等关键参数的经验方案,并依据垂直平均水平运动方程,建立适用于西北太平洋的工程台风风场模型,最高分辨率为2 km。通过理想试验,验证了所建模型的合理性,并重点关注模拟风场对拖曳系数参数化方案的敏感性。结果表明,不同拖曳系数参数化方案(增长型、饱和型、下降型)对强台风内核区的风场模拟有显著影响,但对最大风速的模拟影响不大。为验证所建模型对实际西北太平洋台风的适用性,选取台风“海葵”(1211)进行个例试验,得到最大风速的平均误差为-0.36 m/s,均方根误差为2.22 m/s。进一步选取我国沿海6个受“海葵”影响的测站,进行模拟风向、风速与观测的对比分析,发现所建台风风场模型能很好地模拟出台风影响过程中的风向转变,但各测站的风速均方根误差在1.61~6.92 m/s之间。较大的风速误差主要出现在位于台风中心附近的测站,意味着我国沿海复杂地形对台风的衰减作用在模型中考虑不足,是未来的改进方向。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号