首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植被变化对西北地区陆气耦合强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
西北地区地处欧亚大陆腹地,生态系统对于气候变化和人为影响十分敏感,同时该区也是湿润的东亚季风区与干燥的中亚干旱区的过渡区域,陆气相互作用比较强烈.本文对西北地区植被变化对当地的陆气耦合强度及其与之相关的地表水文过程的影响进行了分析研究,并且找出适于增加植被以缓解西北地区荒漠化趋势的最具成效的地区.本文利用美国国家大气科学研究中心(NCAR,National Center for Atmospheric Research)研制的通用大气模式CAM3(Community Atmosphere Model Version 3)对西北地区植被变化的影响进了数值模拟.本文共设计了三个试验,使用正常地表植被覆盖的参考试验,地表下垫面变为裸土的去植被试验和植被增加的生态环境好转试验.首先,本文对西北地区植被变化对于当地降水量、地表水分盈余量、径流量、地表土壤含水量等地表水文变量的影响进行了分析研究.然后对西北地区植被变化对当地的陆气耦合强度的影响进了分析研究,陆气耦合强度是衡量局地陆气相互作用强弱程度的一个新标准,基于计算年降水量与蒸散量的协方差与降水量方差之比而得到.它利用观测数据或模式输出数据,计算起来简便容易,物理意义明确清晰,陆气相互作用越强烈的地区,其陆气耦合强度也越高.最后,本文计算了一个蒸散-水汽通量散度指数来衡量植被变化对局地蒸散与大气水汽通量散度的影响,其在一定程度上反应了植被变化对局地陆气相互作用和大尺度大气环流输送作用的影响,也可以视为一个评估人为生态环境工程效果的指标.西北地区陆气耦合强度由东南向西北递增.去植被之后,西北地区降水与蒸发普遍减少,其中在东南部区域,地表径流增加约10~40mm,渗流量与地表土壤含水量分别减少约40~80mm和5~20mm3·mm-3,陆气耦合强度上升,这有可能导致水土流失,不利于当地植被的恢复.生态环境好转之后,内陆地区降水与蒸发明显增加,但地表盈余水分有所减少,主要原因是蒸散量相较于降水量增加的更多.其中在沙漠戈壁区边缘的新疆南部与内蒙西部,渗流量与地表土壤含水量分别上升约5~20mm和5~20mm3·mm-3,陆气耦合强度降低,蒸散-水汽通量散度指数较高,这可能主要是由于植被变化对局地陆气相互作用的改变而造成的.植被对于西北地区地表水文过程有着明显的影响,植被的存在能加速西北地区地表水文循环过程,减小陆面蒸散的变化,降低陆气耦合强度.在有限的人力与财力条件下,集中力量在在沙漠戈壁区边缘的新疆南部与内蒙西部适当种植灌木与青草并防止过度放牧,能有效降低当地陆气耦合强度,缓解西北地区荒漠化加剧的趋势.本文下一步还需考虑如模式地表植被数据与真实情况的差异性,海洋因素变化对于植被变化的反馈,以及进行集合实验来增加研究结果的可靠性.  相似文献   

2.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981-2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981―1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990―1998; (3) vegetation cover declined rapidly during 1999―2001; and (4) vegetation cover increased rapidly during 2002―2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology.  相似文献   

3.
Since 1999, large-scale ecosystem restoration has been implemented in the Loess Plateau, effectively increasing regional vegetation coverage. Vegetation restoration has significantly elevated the saturated hydraulic conductivity (Ks) of the near-surface soil layers and increased the vertical heterogeneity of the Ks profile. Many studies have examined the change of runoff due to revegetation, yet the impacts of Ks profile on the soil moisture distribution and runoff generation processes were less explored. In this study, numerical simulations were conducted to investigate how changes in the Ks profile caused by vegetation restoration influenced the hydrological responses at event scale. The numerical simulation results show that the increase of surface Ks caused by vegetation restoration can effectively reduce runoff at event scale. Moreover, the enhancement of vertical heterogeneity of Ks profiles can significantly change the vertical profile of soil water content, prompting more water to percolate into the deep soil layer. When rainfall exceeds a threshold, the accumulation of soil water above the relatively less permeable layer can cause short-term saturation in shallow soil layers, resulting in a transient perched water table. As a result, after the vegetation restoration in the Loess Plateau, though Horton overland flow is still the main runoff generation mechanism, there is a possibility of the emergence of Dunne overland flow under the high vegetation coverage (e.g., NDVI larger than 0.5). This emergence of new runoff generation mechanism, saturation excess runoff, in the Loess Plateau due to the vegetation restoration could provide scientific guidance for water and sediment movement, soil and water conservation practices, and desertification control in the Loess Plateau.  相似文献   

4.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981–2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981–1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990–1998; (3) vegetation cover declined rapidly during 1999–2001; and (4) vegetation cover increased rapidly during 2002–2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology. Supported by the National Natural Science Foundation of China (Grant No. 40671019) and the Knowledge Innovation Project of the Institute of Geographical Sciences and Natural Resources Research of Chinese Academy of Sciences  相似文献   

5.
Spatiotemporal trends in precipitation may influence vegetation restoration, and extreme precipitation events profoundly affect soil erosion processes on the Loess Plateau. Daily data collected at 89 meteorological stations in the area between 1957 and 2009 were used to analyze the spatiotemporal trends of precipitation on the Loess Plateau and the return periods of different types of precipitation events classified in the study. Nonparametric methods were employed for temporal analysis, and the Kriging interpolation method was employed for spatial analysis. The results indicate a small decrease in precipitation over the Loess Plateau in last 53 years (although a Mann–Kendall test did not show this decrease to be significant), a southward shift in precipitation isohyets, a slightly delayed rainy season, and prolonged return periods, especially for rainstorm and heavy rainstorm events. Regional responses to global climate change have varied greatly. A slightly increasing trend in precipitation in annual and sub‐annual series, with no obvious shift of isohyets, and an evident decreasing trend in extreme precipitation events were detected in the northwest. In the southeast, correspondingly, a more seriously decreasing trend occurred, with clear shifts of isohyets and a slightly decreasing trend in extreme precipitation events. The result suggests that a negative trend in annual precipitation may have led to decreased soil erosion but an increase in sediment yield during several extreme events. These changes in the precipitation over the Loess Plateau should be noted, and countermeasures should be taken to reduce their adverse impacts on the sustainable development of the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Serious soil erosion on the Loess Plateau has be-come the focus of world attention.As early as the1950s China has started soil and water conservation work on the Loess Plateau in order to improve the lo-cal eco-environment and mitigate the threat of the coarse sediment in the middle Yellow River to the river channel at downstream.Facts proved that the best alternative is the integrated management of hill slopes and gullies in combination with biological and engineering measures.Biological m…  相似文献   

7.
卫星遥感数据评估黄土高原陆面干湿程度研究   总被引:1,自引:1,他引:0       下载免费PDF全文
康悦  文军  张堂堂  田辉  陈昊 《地球物理学报》2014,57(8):2473-2483
卫星遥感数据具有估算时空尺度上地表参量的优势,在陆地环境状况评估和监测等方面有很大的应用潜力.本文利用美国地球观测系统卫星搭载中等分辨率成像光谱仪(EOS/MODIS)在黄土高原2002-2010年期间获取的每16天归一化植被指数(NDVI)和每日地表温度(LST)数据,分析了黄土高原地区LST-NDVI空间的基本特征.结果发现:当研究区域足够大且遥感数据时间序列足够长时,LST-NDVI空间中(NDVI,LST)散点并非呈三角形或梯形分布.为了能够利用EOS/MODIS的NDVI和LST数据正确地评估陆面的干湿状况,本文给出了利用数据集合法确定LST-NDVI空间中干边和湿边的数值,即在LST-NDVI空间中,利用NDVI等值区间内LST最大值和最小值的集合代表干边和湿边的数值,并进一步证明了在LST-NDVI空间中干边和湿边数值并非呈线性关系.在分析LST-NDVI空间特征的基础上,通过构建地表温度-植被干旱指数(TVDI),探讨其在评估黄土高原地区陆面的干湿状况的应用潜力.结果表明:由TVDI距平表征的陆面的干湿程度与局地降水距平有很好的关联性,二者在时空分布上有较好的对应关系.在我国陇东黄土高原塬区,TDVI数值与地面观测的表层土壤湿度有很好的相关性,相关系数在0.67以上,并通过显著性为1%的检验.由此说明:如果合理选取干边和湿边的数值,TDVI可应用于区域陆面干湿程度的客观评估.  相似文献   

8.
As a result of serious soil erosion on the Loess Pla-teau of China, about 1.6 billion tons of silt discharge into the downstream and 0.4 billion tons deposit on the riverbed every year, causing serious threat to the life and property of the local people on both banks of the lower Yellow River[1]. Since the 1950s, the Chinese government has initiated the work on soil and water conservation and environmental management on the Loess Plateau and formulated the guiding principle of hillslope and …  相似文献   

9.
Factors controlling sediment yield in China's Loess Plateau   总被引:2,自引:0,他引:2  
The Loess Plateau in China, an area with some of the highest sediment yield in the world, contributes predominant proportion of the sediments found in the Yellow River. We examined sediment yield and its control variables in the plateau based on a multi‐year dataset from 180 gauging stations in areas varying in size from 102 to 104 km2. Various morphometric, hydrologic, climatic and land cover variables were estimated in order to understand and predict the variations in sediment yield. The results show a spatial pattern of sediment yield exhibiting an obvious zonal distribution and a coupling between precipitation and vegetation cover that fits the Langbein–Schumm law. A critical threshold of precipitation and vegetation cover was observed among the relationships of sediment yield and precipitation/vegetation cover. A multiple regression equation with three control variables, i.e. vegetation cover, percentage of cultivated loess and annual runoff, explains 65% of the total variation in sediment yield. For the loess dominated basins, where the cultivated loess accounts for more than 60% of the total area, annual runoff was the dominant variable, explaining 76% of the observed variation in sediment yield. The established equation could be a valuable tool for predicting total sediment yield in the Loess Plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
As an integrated result of many driving factors, significant declines in streamflow were observed in many rivers of the Loess Plateau (NW China). This can aggravate the inherent severe water shortages and threatens the regional development. Therefore, it is urgent to develop adaptive measures to regulate the water yield to ensure water security. A key step for successful implementation of such measures is to separate the response of water yield to the main driving factors of land management and climate change. In this study, the variation of annual streamflow, precipitation, potential evapotranspiration, and climatic water balance in a small catchment in the Loess Plateau (near Pingliang, Gansu province) was examined for over five decades, although the relative contribution of changes in land management and climate on the streamflow reduction were estimated. A statistically significant decreasing trend of ‐1.14 mm y‐1 in annual streamflow was detected. Furthermore, an abrupt streamflow reduction because of construction of terraces and check‐dams was identified around 1980. Remarkably, 74% of the total reduction in mean annual streamflow can be attributed to the soil conservation measures. Based on a literature review across the Loess Plateau, we found that the impact of changes in land management and climate on annual streamflow diminished with increasing catchment size. This means that there is a dependency on catchment size for the hydrological response to environmental change. This indicates that at least at the local scale well‐considered land management may help ensure the water security at the Loess Plateau. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

13.
全球变化与植被   总被引:4,自引:0,他引:4  
本文讨论了全球变化与植被的相互依赖与制约关系,以黄土高原为例,研究了古气候与植被之间的关系以及青藏高原隆升对黄河流域生态环境的改造,分析了人类活动对被的破坏给黄土高原生态系统的影响,提出了植被差异与变迁是引起气候快速和区域变化的主要原因。  相似文献   

14.
Effects of soil moisture aggregation on surface evaporative fluxes   总被引:2,自引:0,他引:2  
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in the land-atmosphere system has become a central focus of many climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX, FIFE, and BOREAS) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. To determine the effect of small scale heterogeneities, the spatially averaged evaporative fraction is analytically derived for spatially variable soil moisture and soil-atmospheric controls on evaporation at low soil moisture. This average evaporative fraction is compared with the evaporative fraction determined using the spatially averaged soil moisture, as if from a lumped, or aggregated, land surface model. Results show that the lumped-model based evaporation will over estimate evaporation during periods of low atmospheric demands (early morning/late afternoon, Winter periods, etc.) and under estimate evaporation during periods of high demand (midday Summer periods.) The accuracy of using ‘effective’ parameters in lumped macroscale models depends on the variability of soil moisture and the sensitivity of the soil-vegetation system to low soil moisture.  相似文献   

15.
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.  相似文献   

16.
Multi‐proxy indices retrieved from sediments in Lake Chaonaqiu, an alpine lake on the western Loess Plateau (LP) of China, were used to reconstruct a precipitation history over the last ~300 years. The results correlate well with records from tree rings and historical documents in neighboring regions. We show that the lake oscillated between two states, i.e. wetter climatic conditions, which favored denser vegetation cover, and promoted weaker catchment soil erosion; and drier climatic conditions, which lead to less vegetation coverage, correlate with stronger surface soil erosion. Several intensive soil erosion events were identified in the sediment cores, and most of these occurred during decadal/multi‐decadal dry periods, and correlate well with flood events documented in historical literature. The results of this study show that soil erosion by flood events is particularly intense during dry periods, and further highlights the role of vegetation cover in the conservation of water and soil in small lake basins on the Chinese LP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Based on important factors that affect soil moisture spatial distribution, such as the slope gradients, land use, vegetation cover, and surface water diffusion characteristics together with field measurements of soil moisture data obtained from the surface soil under different land use structures, a soil moisture spatial distribution model was established. The diffusion degree coefficient of surface water for different vegetations was estimated from soil moisture values obtained from field measurements. The model can be solved using the finite unit method. The soil moisture spatial distribution on the hill slopes in the Loess Plateau were simulated by the model. A comparison of the simulated values with measurement data shows that the model is a good fit.  相似文献   

18.
Soil water depletion depth by planted vegetation on the Loess Plateau   总被引:4,自引:0,他引:4  
Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively. Supported by National Basic Research Program of China (Grant No. 2007CB407204) and National Natural Science Foundation of China (Grant No. 40471082)  相似文献   

19.
Near soil surface characteristics change significantly with vegetation restoration, and thus, restoration strategies likely affect soil erodibility. However, few studies have been conducted to quantify the effects of vegetation restoration strategies on soil erodibility in regions experiencing rapid vegetation restoration. This study was conducted to evaluate the effects of vegetation restoration strategies on soil erodibility, reflected by soil cohesion (Coh), penetration resistance (PR), saturated conductivity (Ks), number of drop impacts (NDI), mean weight diameter of soil aggregates (MWD), and soil erodibility K factor on the Loess Plateau. One slope farmland and five 25-year-restored lands covered by old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust were selected as test sites. The old world bluestem was restored via natural succession, while the other four lands were restored by artificial planting. A comprehensive soil erodibility index (CSEI) was produced by a weighted summation method to quantify the effects of vegetation restoration strategies on soil erodibility completely. The results showed that Coh, Ks, NDI, and MWD of the five restored lands were greater than those of the slope farmland. However, the PR and K of the five restored lands were less than those of the slope farmland. CSEI varied greatly under different restoration strategies, from 1 to 0.214. Compared with the control, these indices decreased on average by 68.2%, 78.6%, 72.7%, 75.8%, and 62.8% for old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust, respectively. The variation in soil erodibility was significantly influenced by biological crust thickness, bulk density, organic matter content, plant litter density, and root mass density. Shrub-lands via artificial planting, especially korshinsk peashrub, were considered the most effective restoration strategies to reduce soil erodibility on the Loess Plateau. The results are helpful for selecting vegetation restoration strategies and asking their benefits in controlling soil erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号