首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters \(A\) and \(B\). These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977?–?2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.  相似文献   

2.
We investigate the spatial and temporal variation of sunspot group areas reported by the Greenwich Photoheliographic Results (GPR), the Solar Optical Observing Network (SOON), the Kislovodsk Mountain Astronomical Station (KMAS), and the Debrecen Photoheliographic Data (DPD) databases. We identify improved correction factors for reconciling these individual records to a common scale. Our results show that the DPD sunspot group areas are stable over the studied interval (1974?–?2014). We find an improved fit between GPR and DPD sunspot group areas when using a correction factor such that \(\mathrm{GPR} = 0.975(\pm 0.006) \times \mathrm{DPD}\), independent of the position of the sunspot group on the solar disk. We also find that the scale of KMAS sunspot group areas fits that of DPD well, but has a small position-dependent trend near the limb. However, in order to set SOON sunspot group area records onto the scale of DPD, we find that there is a need for a multivariate correction factor. This multivariate correction factor has a value ranging between 1.1 and 1.9 and is dependent upon the time of the SOON observation, the distance of the group from disk center, and the observatory within the SOON network. Finally, we provide further context to the systematic bias in SOON sunspot group area observations toward lower values relative to those recorded in the GPR and DPD databases that has previously been reported in the literature. We have identified the two main contributors to the SOON area deficit; some penumbral parts are unobserved, and the spot areas are underestimated. Our analysis is vital for studies that require stable, long-term solar activity records such as solar irradiance models that estimate irradiance reduction from records of sunspot group numbers, areas, and locations.  相似文献   

3.
J. Javaraiah 《Solar physics》2013,287(1-2):197-214
Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985?–?2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R,0.95R,…,1.0R measured by the Global Oscillation Network Group (GONG) during the period 1995?–?2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992?–?2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998?–?2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986?–?2007. A large portion (up to ≈?30° latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R and 0.98R. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (>?|3°|?day?1) of the sunspot groups. Implications of these results are pointed out.  相似文献   

4.
Wauters  L.  Dominique  M.  Milligan  R.  Dammasch  I. E.  Kretzschmar  M.  Machol  J. 《Solar physics》2022,297(3):1-22

In most of the solar cycles, activity in the northern and southern hemispheres peaks at different times. One hemisphere peaks well before the other, and at least one of the hemispheric maxima frequently does not coincide with the whole sphere maximum. Prediction of the maximum of a hemisphere and the corresponding north–south asymmetry of a solar cycle may help to understand the mechanisms of the solar cycle, the solar-terrestrial relationship, and solar-activity influences on space weather. Here we analysed the sunspot-group data from the Greenwich Photoheliographic Results (GPR) during 1874?–?1976 and Debrecen Photoheliographic Data (DPD) during 1977?–?2017 and studied the cycle-to-cycle variations in the values of 13-month smoothed monthly mean sunspot-group area in the whole sphere (WSGA), northern hemisphere (NSGA), and southern hemisphere (SSGA) at the epochs of maxima of Sunspot Cycles 12?–?24 and at the epochs of maxima of WSGA, NSGA, and SSGA Cycles 12?–?24 (note that solar-cycle variation of a parameter is expressed as a cycle of that parameter). The cosine fits to the values of WSGA, NSGA, and SSGA at the maxima of sunspot, WSGA, NSGA, and SSGA Cycles 12?–?24, and to the values of the corresponding north–south asymmetry, suggest the existence of a ≈132-year periodicity in the activity of the northern hemisphere, a 54?–?66-year periodicity in the activity of the southern hemisphere, and a 50?–?66 year periodicity in the north–south asymmetry in activity at all the aforementioned epochs. By extrapolating the best-fit cosine curves we predicted the amplitudes and the corresponding north–south asymmetry of the 25th WSGA, NSGA, and SSGA cycles. We find that on average Solar Cycle 25 in sunspot-group area would be to some extent smaller than Solar Cycle 24 in sunspot-group area. However, by inputting the predicted amplitudes of the 25th WSGA, NSGA, and SSGA cycles relationship between sunspot-group area and sunspot number we find that the amplitude (\(130\pm 12\)) of Sunspot Cycle 25 would be slightly larger than that of reasonably small Sunspot Cycle 24. Still it confirms that the beginning of the upcoming Gleissberg cycle would take place around Solar Cycle 25. We also find that except at the maximum of NSGA Cycle 25 where the strength of activity in the northern hemisphere would be dominant, the strength of activity in the southern hemisphere would be dominant at the maximum epochs of the 25th sunspot, WSGA, and SSGA cycles.

  相似文献   

5.
Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev?–?Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.  相似文献   

6.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   

7.
We have used the daily values of the equatorial rotation rate determined from the Mt. Wilson daily Doppler-velocity measurements during the period 3 December 1985 – 5 March 2007 to search for periodicities in the solar equatorial rotation rate on time scales shorter than 11 years. After the daily values have been binned into 61-day intervals, a cosine fit with a period of one year was applied to the sequence to remove any seasonal trend. The spectral properties of this sequence were then investigated by using standard Fourier analysis, maximum-entropy methods, and a Morlet-wavelet analysis. From the analysis of the Fourier power spectrum we detected peaks with periodicities around 7.6, 2.8, and 1.47 years and 245, 182, and 158 days, but none of them were at a statistically significant level. In the Morlet-wavelet analysis the ≈1.47-year periodicity is detected only for 1990 (i.e., near the maximum of cycle 22) and near the end of cycle 22 in 1995. From the same wavelet analysis we found some evidence for the existence of a 2.8-year periodicity and a 245-day periodicity in the equatorial rotation rate around the years 1990 and 1992, respectively. In the data taken during the period 1996 – 2007, when the Mt. Wilson spectrograph instrumentation was more stable, we were unable to detect any signal from the wavelet analysis. Thus, the detected periodicities during the period before 1996 could be artifacts of frequent changes in the Mt. Wilson spectrograph instrumentation. However, the temporal behavior of most of the activity phenomena during cycles 22 (1986 – 1996) and 23 (after 1997) is considerably different. Therefore, the presence of the aforementioned short-term periodicities during the last cycle and absence of them in the current cycle may, in principle, be real temporal behavior of the solar rotation during these cycles.  相似文献   

8.
Correlation analysis of the mean longitude distribution of sunspot groups (taken from the Greenwich Photoheliographic Results) and high-speed solar wind streams (inferred from the C9 index for geomagnetic disturbances) with the Bartels rotation period P = 27.0 days shows anti-correlation for individual cycles.In particular, the longitudes of post-maximum stable streams of cycle 18 and 19 are well anticorrelated with the preferred longitudes of sunspot groups during the maximum activity periods of these cycles. This is further analyzed using the daily Zürich sunspot number, R, between 1932 and 1980, which reveals a conspicuous similarity of cycle 18 and 19 as well as cycle 20 and 21.We conclude that there is a solar memory for preferred longitudes of activity extending at least over one, probably two cycles (i.e. one magnetic cycle of 22 years). We conjecture that this memory extends over longer intervals of time as a long-term feature of solar activity.  相似文献   

9.
To gain insight into the relationships between solar activity, the occurrence and variability of coronal holes, and the association of such holes with solar wind features such as high-velocity streams, a study of the period 1963–1974 was made. This period corresponds approximately with sunspot cycle 20. The primary data used for this work consisted of X-ray and XUV solar images obtained from rockets. The investigation revealed that:
  1. The polar coronal holes prominent at solar minimum, decreased in area as solar activity increased and were small or absent at maximum phase. This evolution exhibited the same phase difference between the two hemispheres that was observed in other indicators of activity.
  2. During maximum, coronal holes occurred poleward of the sunspot belts and in the equatorial region between them. The observed equatorial holes were small and persisted for one or two solar rotations only; some high latitude holes had lifetimes exceeding two solar rotations.
  3. During 1963–74 whenever XUV or X-ray images were available, nearly all recurrent solar wind streams of speed ?500 km s?1 were found associated with coronal holes at less than 40° latitude; however some coronal holes appeared to have no associated wind streams at the Earth.
  相似文献   

10.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   

11.
Recurrence of solar activity: Evidence for active longitudes   总被引:1,自引:0,他引:1  
The autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. In addition to establishing periodicities for the solar rotation, the solar activity cycle, and perhaps the Gleissberg Cycle, they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. There is evidence for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

13.
Sunspot nests     
For the period August 1959–December 1964 the Greenwich Photoheliographic Results were searched for sunspot nests. Such a nest is a sequence of sunspot groups that appear within a small area on the solar surface and that last for several months. The search procedure is described and data for 41 probable sunspot nests are given. At least three quarters of these nests appear to be real, and not chance clusters.The nests are the same type of activity sequences as the Fleckenherde discovered by Becker (1955) and the complexes of activity pointed out by Gaizauskas et al. (1983). The complexes of activity as defined by Bumba and Howard (1965) are different patterns, however; the relation between complexes and the nests is shown.Some properties of the nests are: (i) many nests appear as double structures; (ii) single nests and components of double nests are quite compact: the effective areas are comparable to those of medium-large sunspot groups; (iii) each nest rotates at its own steady rate about the Sun; (iv) the intrinsic scatter in the rotation rates is much larger than the trend in the differential rotation; (v) displacements in latitude are less than a few meters per second; (vi) many nests live for 6 to 15 Carrington rotation periods, the minimum lifetime is not yet determined; (vii) the fraction of the sunspot groups that are members of nests is large (at least 30%).  相似文献   

14.
In view of the construction of new sunspot-based activity indices and proxies, we conducted a comprehensive survey of all existing catalogs providing detailed parameters of photospheric features over long time intervals. Although there are a fair number of such catalogs, a global evaluation showed that they suffer from multiple limitations: finite or fragmented time coverage, limited temporal overlap between catalogs, and, more importantly, a mismatch in contents and conventions. Starting from the existing material, we demonstrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspots and sunspot groups. To do this, we use the uniquely detailed Debrecen Photoheliographic Data (DPD), which is already a composite of several ground-based observatories and of SOHO data, and the USAF/Mount Wilson catalog from the Solar Observing Optical Network (SOON). We also outline our cross-identification method, which was needed to match the non-overlapping solar active-region nomenclature. This proved to be the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database that collects all available sunspot group parameters to address future solar-cycle studies beyond the traditional sunspot-index time series [R i].  相似文献   

15.
We study quasi-periodical changes in the amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity, and the parameters of solar wind and solar activity. We have recently found quasi-periodicity of three to four Carrington rotation periods (3?–?4 CRP) in the amplitudes of the 27-day variation of the GCR intensity (Gil and Alania in J. Atmos. Solar-Terr. Phys. 73, 294, 2011). A similar recurrence is recognized in parameters of solar activity (sunspot number, solar radio flux) and solar wind (components of the interplanetary magnetic field, solar wind velocity). We believe that the 3?–?4 CRP periodicity, among other periodicities, observed in the amplitudes of the 27-day variation of the GCR intensity is caused by a specific cycling structure of the Sun’s magnetic field, which may originate from the turbulent nature of the solar dynamo.  相似文献   

16.
The purpose of the present communication is to identify the short-term (few tens of months) periodicities of several solar indices (sunspot number, Caii area and K index, Lyman , 2800 MHz radio emission, coronal green-line index, solar magnetic field). The procedure used was: from the 3-month running means (3m) the 37-month running means (37m) were subtracted, and the factor (3m – 37m) was examined for several parameters. For solar indices, considerable fluctuations were seen during the ± 4 years around sunspot maxima of cycles 18–23, and virtually no fluctuations were seen in the ± 2 years around sunspot minima. The spacings between successive peaks were irregular but common for various solar indices. Assuming that there are stationary periodicities, a spectral analysis was carried out which indicated periodicities of months: 5.1–5.7, 6.2–7.0, 7.6–7.9, 8.9–9.6, 10.4–12.0, 12.8–13.4, 14.5–17.5, 22–25, 28 (QBO), 31–36 (QBO), 41–47 (QTO). The periodicities of 1.3 year (15.6 months) and 1.7 years (20.4 months) often mentioned in the literature were seen neither often nor prominently. Other periodicities occurred more often and more prominently. For the open magnetic flux estimated by Wang, Lean, and Sheeley (2000) and Wang and Sheeley (2002), it was noticed that the variations were radically different at different solar latitudes. The open flux for < 45 solar latitudes had variations very similar (parallel) to the sunspot cycle, while open flux for > 45 solar latitudes had variations anti-parallel to the sunspot cycle. The open fluxes, interplanetary magnetic field and cosmic rays, all showed periodicities similar to those of solar indices. Many peaks (but not all) matched, indicating that the open flux for < 45 solar latitudes was at least partially an adequate carrier of the solar characteristics to the interplanetary space and thence for galactic cosmic ray modulation.  相似文献   

17.
Long-term variations of solar differential rotation and sunspot activity are investigated through re-analyzing the data on parameters of the differential-rotation law obtained by Makarov, Tlatov, and Callebaut (Solar Phys. 170, 373, 1997), Javaraiah, Bertello, and Ulrich (Astrophys. J. 626, 579, 2005a; Solar Phys. 232, 25, 2005b), and Javaraiah et al. (Solar Phys. 257, 61, 2009). Our results indicate that the solar-surface-rotation rate at the Equator (indicated by the A-parameter of the standard solar-rotation law) shows a secular decrease since Cycle 12 onwards, given by about 1?–?1.5×10?3 (deg?day?1?year?1). The B-parameter of the standard differential-rotation law seems to also show a secular decrease since Cycle 12 onwards, but of weak statistical significance. The rotation rate averaged over latitudes 0°?–?40° does not show a secular trend of statistical significance. Moreover, the average sunspot area shows a secular increase of statistical significance since Cycle 12 onwards, while a negative correlation is found between the level of sunspot activity (indicated by the average sunspot area) and the solar equatorial rotation on long-term scales.  相似文献   

18.
In this paper we present the results of a sunspot rotation study using Abastumani Astrophysical Observatory photoheliogram data for 324 sunspots. The rotation amplitudes vary in theinebreak 2–64° range (with maximum at 12–14°), and the periods around 0–20 days (with maximum atinebreak 4–6 days). It could be concluded that sunspot rotations are rather inhomogeneous and asymmetric, but several types of sunspots are distinguished by their rotational parameters.During solar activity maximum, sunspot average rotation periods and amplitudes slightly increase. This can be affected by the increase of sunspot magnetic flux tube depth. So we can suppose that sunspot formation during solar activity is connected to a rise of magnetic tubes from deeper layers of the solar photosphere, strengthening the processes within the tube and causing variations in rotation.There is a linear relation between tilt-angle oscillation periods and amplitudes, showing higher amplitudes for large periods. The variations of those periods and especially amplitudes have a periodical shape for all types of sunspots and correlate well with the solar activity maxima with a phase delay of about 1–2 years.  相似文献   

19.
Correlation and spectral analysis of solar radio flux density and sunspot number near the maximum of the sunspot cycle has indicated the existence of
  1. long period amplitude modulation of the slowly varying component (SVC) of radio emission
  2. coronal storage over a period of the order of three solar rotations
  3. fast decay (one solar rotation period or less) of gyromagnetic emissions from radio sources
  4. shift in location of chromospheric sources compared to those of either the upper corona or the photosphere.
  相似文献   

20.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号