首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Natural floodplains are spatially heterogeneous and dynamic ecosystems but at the same time, a highly endangered landscape feature due to climate change and human impacts such as water storage, flood control and hydropower production. Flow is considered a master variable that shapes channel morphology and the heterogeneity, distribution, and turnover of floodplain habitats. Despite their highly dynamic nature, the relative abundance of different habitat elements (islands, gravel bars) in natural floodplains seems to remain relatively constant over ecological periods and is referred to as the shifting mosaic steady state concept. In this conceptual context, we analysed spatiotemporal changes in relative habitat abundance and channel complexity of an alpine floodplain from its near natural state in 1940 before water abstraction and levee construction until 2007 using historical aerial images. Within the first decades of impairment, the relative abundance of floodplain habitats that depend on flood and flow pulses such as parafluvial channels and islands shifted toward a greater abundance of terrestrial forest and grassland habitats. After 1986, the duration and frequencies of high‐precipitation events (>60 mm 24 h–1) triggering major, channel‐reworking floods increased substantially and caused a restructuring of the floodplain and decrease in the abundance of more terrestrial habitat types. These results are contrary to expectations of the shifting mosaic steady state concept yet suggest its potential application as an indicator of landscape transformation and human impacts on floodplain ecosystems. Last, the results raise the applied question as to whether an increased frequency of high flow events induced by climate change can contribute to floodplain restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Fluvial processes strongly influence riparian forests through rapid and predictable shifts in dominant species, tree density and size that occur in the decades following large floods. Modelling riparian forest characteristics based on the age and evolution of floodplains is useful in predicting ecosystem functions that depend on the size and density of trees, including large wood delivered to river channels, forest biomass and habitat quality. We developed a dynamic model of riparian forest structure that predicts changes in tree size and density using floodplain age derived from air photos and historical maps. Using field data and a riparian forest chronosequence for the 160-km middle reach of the Sacramento River (California, USA), we fit Weibull diameter distributions with time-varying parameters to the empirical data. Species were stratified into early and late successional groups, each with time-varying functions of tree density and diameter distributions. From these, we modelled how the number and size of trees in a stand changed throughout forest succession, and evaluated the goodness-of-fit of model predictions. Model outputs for the early successional group, composed primarily of cottonwoods and willows, accounted for most of the stand basal area and large trees >10 cm DBH for the first 50 years. Post-pioneer species with slower growth had initially low densities that increased slowly from the time of floodplain creation. Within the first 100 years, early successional trees contributed the most large wood that could influence fluvial processes, carbon storage, and instream habitat. We applied the model to evaluate the potential large wood inputs to the middle Sacramento River under a range of historical bank migration rates. Going forward, this modelling approach can be used to predict how riparian forest structure and other ecosystem benefits such as carbon sequestration and habitat quality respond to different river management and restoration actions.  相似文献   

5.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long‐term (> 102 years) storage. Research in ecosystem processing emphasizes the importance of organic carbon (OC) in river systems, and estimates of OC fluxes in terrestrial freshwater systems indicate that a significant portion of terrestrial carbon is stored within river networks. Studies have examined soil OC on floodplains, but research that examines the potential mechanistic controls on OC storage in riparian ecosystems and floodplains is more limited. We emphasize three primary OC reservoirs within fluvial systems: (1) standing riparian biomass; (2) dead biomass as large wood (LW) in the stream and on the floodplain; (3) OC on and beneath the floodplain surface, including litter, humus, and soil organic carbon (SOC). This review focuses on studies that have framed research questions and results in the context of OC retention, accumulation and storage within the three primary pools along riparian ecosystems. In this paper, we (i) discuss the various reservoirs for OC storage in riparian ecosystems, (ii) discuss physical conditions that facilitate carbon retention and storage in riparian ecosystems, (iii) provide a synthesis of published OC storage in riparian ecosystems, (iv) present a conceptual model of the conditions that favor OC storage in riparian ecosystems, (v) briefly discuss human impacts on OC storage in riparian ecosystems, and (vi) highlight current knowledge gaps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The high plant richness in riparian zones of tropical forest streams and the relationship with an input of organic matter in these streams are not well understood. In this study, we assessed (i) the annual dynamics of inputs of coarse particulate organic matter (CPOM) in a tropical stream; and (ii) the relationship of species richness on riparian vegetation biomass. The fluxes and stock of CPOM inputs (vertical-VI = 512, horizontal-HI = 1912, and terrestrial-TI = 383 g/m2/year) and the benthic stock (BS = 67 g/m2/month) were separated into reproductive parts, vegetative parts and unidentified material. Leaves that entered the stream were identified and found to constitute 64 morphospecies. A positive relationship between species richness and litterfall was detected. The dynamics of CPOM were strongly influenced by rainfall and seasonal events, such as strong winds at the end of the dry season. Leaves contributed most to CPOM dynamics; leaf input was more intense at the end of the dry season (hydric stress) and the start of the rainy season (mechanical removal). Our study show an increase of litter input of CPOM by plant diversity throughout the year. Each riparian plant species contributes uniquely to the availability of energy resources, thus highlighting the importance of plant conservation for maintaining tropical streams functioning.  相似文献   

8.
9.
Floodplains are vital components of river ecosystems and play an important role in carbon cycling and storage at catchment and global scales. For efficient river management and conservation, it is critical to understand the functional role of spatiotemporally complex and dynamic habitat mosaics of river floodplains. Unfortunately, the fundamental understanding of mineralization and carbon flux patterns across complex floodplains is still fragmentary. In this study, respiratory potential (i.e., electron transport system activity [ETSA]) was quantified seasonally across different aquatic and terrestrial habitats (wetted channels, gravel bars, islands, riparian forests, and grasslands) of 2 Alpine floodplains differing in climate, altitude, discharge, flow alteration intensity, and land use (So?a [natural flow regime, 12% grassland area] and Urbach [mean annual discharge reduction by 30% due to water abstraction, 69% grassland area]). In situ respiration (R) was measured, and ETSA–R ratios were calculated to examine differences in exploitation intensity of the overall respiratory capacity among floodplain habitats and seasons. ETSA and R provided potential and actual estimates, respectively, of organic matter mineralization in the different floodplain habitats. Hierarchical linear regression across habitat types showed that organic matter, grain sizes <0.063 mm, and water content were the most important predictors of ETSA in both floodplains, and grain sizes 2–0.063 and >8 mm were also highly important for the So?a floodplain. The combination of ETSA and R measurements conducted in contrasting floodplains increased our understanding of the relationships between floodplain habitat heterogeneity, organic matter mineralization and human impacts, that is, structural–functional linkages in floodplains. These data are integral towards predicting changes in floodplain function in response to environmental alterations from increasing human pressures and environmental change.  相似文献   

10.
After more than 300 years of widespread and intensive river management, few examples of complex, unmanaged river systems remain within Europe. An exception is the Fiume Tagliamento, Italy, which retains a riparian woodland margin and unconfined river channel system throughout almost the entire 170 km length of its river corridor. A research programme is underway focusing on a range of related aspects of the hydrology, fluvial geomorphology and ecology of the Tagliamento. This paper contributes to that programme by focusing on large wood retention. The paper adopts a simple force:resistance approach at the scale of the entire river corridor in order to identify reaches of the river with a high wood retention potential. Information on the character of the river corridor is derived from 1:10 000 scale topographic maps. A range of indices measured at 330 transects across the river corridor supports a classification of the geomorphological style of the river which reflects the presence and abundance of properties previously identified in the literature as large wood retention sites. This classification provides a qualitative representation of the ‘resistance’ of the corridor to wood movement and thus its overall wood‐retention potential. The map‐derived indices are also used to extrapolate estimates of the ten year return period flood to each of the 330 transects so that the downstream pattern of unit stream power can be quantified as an index representing ‘force’ in the analysis. Although input of wood is an important factor in many river systems, it is assumed not to be a limiting factor along the Tagliamento, where riparian woodland is abundant. Field observations of large wood storage illustrate that wood retention at eight sites along the river reflects the presence and abundance of the features incorporated in the classification of geomorphological style, including the complexity of the channel network, the availability of exposed gravel areas, and the presence of islands. In general at the time of survey in August 1998, open gravel areas were estimated to store approximately 1 t ha−1 of wood in single‐thread reaches and 6 t ha−1 in multiple‐thread reaches. Established islands were estimated to store an average of 80 t ha−1 of wood. Nevertheless, there was considerable variability between sites, and pioneer islands, which are not represented on maps or readily identified from air photographs because of their small size, were estimated to store an order of magnitude more wood than established islands. Furthermore, the wood storage from this sample of eight sites did not reflect variability in estimated unit stream power. A series of areas for further research are identified, which can be explored using field data, and which will throw more light on the processes of wood retention in this extremely dynamic fluvial environment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Determining the effects of species loss on ecosystems has received considerable attention given the current threats many ecosystems are facing. A significant body of research has yielded many insights to this question, but this work has been limited by a focus on ecosystems where primary production plays a significant role in energy transfer. As many ecosystems rely on energy sources that are not derived from in situ production, there is a need to better understand how species loss will affect ecosystems of varying trophic states. To examine the effects of species loss on an ecosystem that is not reliant on in situ primary production, we manipulated the larval amphibian community of temporary forest ponds. These ponds are heterotrophic systems that rely on allochthonous inputs of detritus as a basal energy source. The larvae of two amphibian species that are prone to local extinction, wood frogs (Lithobates sylvatica) and spotted salamanders (Ambystoma maculatum), were removed from ponds and net ecosystem production was monitored. We found no effects of the removal of these top consumers on ecosystem functioning or on lower trophic groups (i.e., zooplankton, algae, bacteria). While amphibians can influence food web dynamics in other systems, their influence on system processes in temporary forest ponds appears to be limited. We hypothesize that the lack of any effects is due to the microbial degradation of detritus ??swamping?? the system, providing more than enough energy to maintain the food web, and/or due to omnivory dampening species interactions. These data indicate that the functioning of heterotrophic systems may be inherently stable due to internal dynamics that minimize interaction strengths among trophic groups.  相似文献   

12.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

13.
The role of wood as a driver of landform development appears to have been overlooked in the interpretation of palaeo‐landscape change along river corridors. Deforested river corridors and wood‐free rivers characterize ‘modern’, managed landscapes, but along natural river corridors both driftwood dynamics and tree reproductive strategies can have a dramatic impact on the style and rate of channel and floodplain development. Therefore, we believe that interpretations of the post‐glacial history of river valleys across the northern temperate climatic zone could be usefully reassessed, incorporating the roles of riparian trees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We demonstrate how land use can drive mountain streams in the Southern Rockies across a threshold to induce an alternative state of significantly reduced physical complexity of form and reduced ecological function. We evaluate field data from 28 stream reaches in relatively laterally unconfined valleys and unmanaged forest that is either old‐growth forest or naturally disturbed younger forest, and 19 stream reaches in managed forest with past land use. We evaluate potential differences in stream form, as reflected in channel planform, cross‐sectional geometry, and in‐stream wood loads, and stream function, as reflected in pool volume and storage of organic carbon. Field data indicate a threshold of differences in stream form and function between unmanaged and managed stream reaches, regardless of forest stand age, supporting our hypothesis that the legacy effects of past land use result in an alternative state of streams. Because physical complexity that increases stream retentiveness and habitat can maintain aquatic‐riparian ecosystem functions, the alternative physical state of streams in managed watersheds creates a physical template for an alternative ecological state with reduced pool volume, organic carbon storage, and ecosystem productivity. We recommend maintaining riparian forests that can supply large wood to streams as a stream restoration technique in historically forested stream segments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Feedback between hydrogeomorphological processes and riparian plants drives landscape dynamics and vegetation succession in river corridors. We describe the consequences of biogeomorphological feedback on the formation and dynamics of vegetated fluvial landforms based on observations from the channelized Isère River in France. The channel was laterally confined with embankments and mostly straightened. From the beginning of the 1970s to the end of the 1990s, alternate bars were progressively but heavily colonized by vegetation. This context presented an exceptional opportunity to analyse temporal adjustments between fluvial landforms and vegetation succession from bare gravel bars to mature upland forest as the consequence of biogeomorphological interactions. Based on a GIS analysis of aerial photographs (between 1948 and 1996), we show that the spatiotemporal organization of vegetated bars within the river channel observed in 1996 resulted from a bioconstruction and biostabilization effect of vegetation and interactions between bars of varying age, size and mobility. Field measurements in 1996 reflected how a strong positive feedback between sedimentary dynamics and riparian vegetation succession resulted in the construction of the vegetated bars. A highly significant statistical association of geomorphological and vegetation variables (RV of co-inertia analysis = 0.41, p < 0.001) explained 95% of the variability in just one axis, supporting the existence of very strong feedback between geomorphological changes (i.e. the transformation of small bare alternate bars to fluvial landforms covered by mature upland forest, and vegetation succession). Such dynamics reflect the fluvial biogeomorphological successions model, as described by the authors earlier. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Using the River Tagliamento, Italy, as an example, we examine the role of self-organisation in the formation and dynamics of vegetated islands in fluvial ecosystems. We consider how various biogeomorphic processes, such as feedbacks between tree growth and sedimentation, influence island self-assembly, as well as the potential influences of island landforms on resource distribution and shifts in ecosystem state. Despite the abundance of island landforms of different sizes and ages in island-braided reaches along the River Tagliamento, island formation is only found within a specific hydrological and sedimentary envelope, and depends upon a delicate balance of biotic-abiotic feedbacks. As a result, island landforms tend to be lost when river functioning is altered by human interventions. We argue that the specific biogeomorphic processes and self-organisation associated with river island dynamics offer an example of biogeomorphic inheritance, in which reciprocal feedbacks between species and geomorphic processes favour engineer species and promote the future development of the landforms. Thus, islands represent extended phenotypes – or external expressions of genetic traits – of key riparian ecosystem engineers. This capacity to modify the physical environment has important implications for landform evolution and riparian biodiversity. In conclusion, we propose several topics that merit investigation to improve our understanding of the biogeomorphology and self-organisation of river island systems.  相似文献   

17.
We discuss the importance of modelling riparian vegetation and river flow interactions under differing hydrologic regimes. Modelling tools have notable implications with regard to the understanding of riverine ecosystem functioning and to promote sustainable management of water resources. We present both deterministic and stochastic approaches with different levels of simplification, and discuss their use in relation to river and vegetation dynamics at the related scale of interest. We apply such models to both meandering and braided rivers, in particular focusing on the floodplain dynamics of an alpine braided river affected by water impoundment. For this specific case we show what the expected changes in riparian vegetation may be in a ‘controlled release’ scenario for the postdam river Maggia, Switzerland. Finally, the use of these models is discussed in the context of current research efforts devoted to river restoration practice.  相似文献   

18.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Streams and their accompanying riparian environments are intrinsic components of terrestrial carbon cycling. However, they have been understudied in terms of the magnitude of their storage components and the role of disturbance in determining carbon storage capacity. This study presents partial carbon budgets for stream‐riparian corridors along six study reaches in mountain headwater streams of southeast Wyoming to evaluate the impact of tie‐driving, a historic disturbance legacy, on contemporary carbon storage. Detailed measurements of biomass were collected for in‐stream components of carbon including fine and coarse particulate organic matter and in‐stream large wood. Biomass was also estimated for riparian components including standing trees (live and dead), regenerating conifers, shrubs and herbaceous vegetation, downed wood, litter, and duff (partially decayed litter). Biomass was converted to carbon for all components and differences in storage were compared between tie‐driven and non‐driven reaches. Carbon content in riparian soils (to approximately 20 cm) was also measured. Twice the amount of carbon was stored in the riparian areas relative to the streams; most carbon was stored in standing trees (live and dead). While overall carbon storage within the riparian areas and streams were similar between disturbance conditions, the amount of carbon stored in large in‐stream wood and downed wood on the floodplain was significantly higher in systems that were not tie‐driven. The results of this study indicate that legacies of tie‐driving influence carbon storage within the region, while also capturing baseline estimates of carbon storage in the wake of recent bark beetle infestations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Alien plant invasions of riparian zones can trigger bottom-up effects on freshwater ecosystems through changes in leaf litter supply. Riparian zones of ponds are often invaded by alien species, and although these habitats are common, the effect of invasive alien species on ponds has rarely been studied. We performed a leaf litter experiment in a pond and compared within- and between-species variation in the breakdown rates of three native species (Alnus glutinosa, Phragmites australis and Typha angustifolia) and two aggressive alien invaders of riparian zones (Fallopia japonica and Solidago canadensis). The litter of S. canadensis decomposed faster than the litter of the other plants; more than 50 % of the S. canadensis biomass decomposed within a week. This contradicts the home-field advantage hypothesis, and we argue that the quality rather than the origin of litter might be the key factor driving breakdown rates. We also reported considerable intra-specific variation; old leaves (collected in spring after a partial aerial breakdown on stems) decomposed two to seven times slower than senescent leaves (collected in autumn just after abscission). The continuous seasonal supply of leaves of different quality into freshwaters may be disrupted by terrestrial invasions, especially if an invader forms monoculture stands and produces a highly palatable litter, as is the case with S. canadensis. This may fundamentally alter the resource dynamics in the pond environment through a rapid depletion of litter mass before the next litterfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号