首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
闫国强  殷跃平  黄波林  胡雷 《岩土力学》2022,43(9):2568-2580
三峡库区巫峡段发现多处顺层岸坡滑移−弯曲变形迹象,库水循环涨落加剧了岸坡前缘劣化损伤与失稳破坏。以巫峡段青石 6号坡为例构建室内概化模型,开展顺层灰岩岸坡在消落带岩体劣化下的灾变机制研究。研究结果表明:蓄水前岸坡整体长期处于稳定状态。随着劣化进行,蓄水后岸坡变形加剧直至溃屈破坏,岩体劣化缩短了劣化−溃屈失稳进程。运动学分析显示,溃屈破坏时同一岩层达到速度峰值近似。岩层“弯折点”后部运动特征较为一致,前部较为离散。溃屈破坏点是岸坡能量释放的转折点和顶点;随劣化演变位移、应力逐渐递增,呈现提前破坏征兆,溃屈破坏前后应力产生“集中−释放”。整体来看,应力变化提前于位移,表明应力监测更有效。应力监测的核心在于关键区段的确定,对于劣化−溃屈型岸坡来讲,前缘“挠曲段”处应力陡增可作为岸坡临界失稳的重要表征;“劣化−溃屈”演化进程中后缘推挤始终存在,它是岸坡灾变的前提。但岸坡失稳的主导因素却是消落带岩体持续不断的劣化。青石 6 号坡当前处于向强烈弯曲隆起演化进程中,由于消落带岩体持续劣化,可能由稳定/基本稳定逐渐演变为欠稳定状态。  相似文献   

2.
三峡库区地质环境复杂,受库水位升降作用影响岩溶岸坡消落区岩体劣化,加快了岸坡不稳定性发展。文章以三峡库区黄岩窝危岩体为研究对象,现场详查了消落带岩体劣化现象,计算了危岩体的长期稳定性数值。研究表明:黄岩窝危岩体存在垂直岩溶带和底部渗流带;底部渗流带处于消落带部位,存在软弱区和岩体劣化现象。考虑库水位和暴雨时岩溶水压岸坡稳定性系数为1.69,危岩体处于稳定状态。随着岩体劣化导致底部软弱区岩体参数不断下降,稳定性系数年均下降约0.01。预测在约57个周期性水位变动之后黄岩窝危岩体变为欠稳定状态,62个周期后发生失稳破坏。危岩体的破坏模式是顶部出现岩块倾倒崩落和底部软弱区贯通之后发生滑移的复合式破坏,与野外调查定性认识基本一致。研究结果对库区类似的地质灾害预警和防治有着重要的指导意义。  相似文献   

3.
三峡库区岸坡消落带是库岸边坡稳定性的敏感地带。库区内多次发生的地质灾害均与消落带的岩体劣化有关。随着时间的推移消落带的岩体劣化情况日益加剧,新生型滑坡不断涌现。本文通过实地调查与室内分析,系统总结了三峡库区秭归至巴东段岸坡消落带岩体劣化的类型以及新生型滑坡隐患的演化模式。研究表明,区内消落带岩性主要以碳酸盐岩类和碎屑岩类为主,碳酸盐岩类劣化类型主要有溶蚀(潜蚀)、裂缝显化与扩张和机械侵蚀,碎屑岩类的劣化类型主要有松动(剥落)、冲蚀(磨蚀)、结构面崩解块裂和软硬相间侵蚀,其中以松动/剥落型最为发育。在此基础上结合结构面发育特征、岸坡结构、岩性及结构和边界特征,厘定了不同岸坡消落带岩体劣化演化形成新生型滑坡隐患点的模式,碳酸岩盐类岸坡主要以基座碎裂压溃型、基座掏空倾倒型、顺向滑移型为主;碎屑岩类岸坡主要以软硬相间坍(崩)塌型、视倾向楔形滑动型、顺向滑移型及逆向倾倒型为主。研究结果可为三峡库区地质灾害监测预警及防治提供技术支撑。  相似文献   

4.
三峡工程形成了在高程145~175 m之间的周期性水位波动,促使库区灰岩岸坡劣化损伤加剧,稳定性急剧衰减。其中巫峡段灰岩岸坡受库水长期的物理化学作用,宏观劣化现象最为明显,局部顺层岸坡底部受侵蚀劣化脱空,岩层出露,存在潜在的滑移-拉裂破坏。文章借助三维激光扫描点云技术对岩体表层宏-细观劣化进行了定量化观测,发现岩体劣化主要沿着泥质填充条带等薄弱结构面进行,现场“刀砍纹”状溶蚀沟槽的差异劣化与白云石和方解石抗溶蚀性能密切相关。室内干湿循环劣化试验进一步表明:三叠系大冶组(T1d)泥质条带灰岩的劣化速率明显高于三叠系嘉陵江组(T1j)白云质灰岩,这与两种岩性的矿物成分及孔隙微观结构组成相关,且随着循环周期增加,两种岩样的物理力学性质呈现出不同程度的衰减;基于核衰变劣化控制式进行回归,R2高达0.861 9~0.999 3。引入劣化常数λ、半衰期T1/2对两种岩性劣化特征进行描述,发现同一岩性不同物理参数对应的劣化常数λ、半衰期T1/2不同,呈现“簇状”分布,与室内试验数据表现一致;运用劣化控制式时要考虑现场岩体由于各种结构面的存在,岩体会加速劣化,需要对劣化控制方程和力学强度进行相应折减。文章结合现场宏-细观劣化现象以及室内干湿循环,构建了物理意义明确的基于核衰变的劣化控制方程,为类似灰岩岸坡劣化评估预测与稳定性分析提供参考。  相似文献   

5.
自三峡库区蓄水以来, 岸坡消落带岩体劣化趋势明显, 加速了岩质岸坡向欠稳定和不稳定发展, 潜在崩塌涌浪灾害威胁长江航道安全。以三峡库区板壁岩为例, 采用抗剪强度折减法分析在岩体劣化工况下危岩体的破坏过程与长期稳定性。结果表明: 在自然工况下, 板壁岩危岩体处于稳定状态; 在库水+岩体劣化工况下, 中部锁固段处拉应力集中, 拉张裂缝逐步向顶部主控裂缝及底部基破碎带延展并相互贯通, 可能发生滑移-剪切破坏; 在库水+岩体劣化+强降雨极端工况下, 约40个水文周期后, 岩体强度下降30%, 板壁岩危岩体的稳定性系数降至约1.14, 处于欠稳定状态, 建议进行工程防治, 提高危岩体稳定性, 以保障航道安全。研究结果可为三峡库区板壁岩及类似危岩体的防灾减灾工作提供科学合理的依据。   相似文献   

6.
三峡库区在高程145~175 m之间周期性水位调控,促使库区灰岩岸坡劣化损伤加剧、稳定性衰减。本文结合巫峡段顺层灰岩岸坡“滑移-弯曲”破坏实例,基于弹塑性板翘曲模型,考虑岩体动态劣化概念,结合广义H-B准则中GSI(t)岩体参数动态指标,推导得临界挠曲段平衡方程。与传统静态计算方法相比,适用性更广,可以考虑岸坡随劣化时间t动态演化过程,更加符合工程实际。结果表明:随着劣化进行临界挠曲段lcr逐步降低,岸坡稳定状态变差,下滑推力F逐步增大,抗弯刚度K逐渐减小,也正是这两方面因素导致lcr快速降低。由于岩体劣化函数GSI(t)为指数劣化形式,故lcr呈现出快速降低并趋缓直至逼近一定值,该区段为岸坡防治的“关键区段”;随着岩层倾角α增大,lcr与相对板长比RPL快速降低,随着岩层厚度hi增大,lcr与RPL缓慢变大,α对lcr与RPL的影响明显大于hi。且岸坡lcr快速下降角α大约在40°~60°,可作为类似顺向岸坡是否容易滑移-弯曲失稳的地质判据。本文推导的考虑岩体劣化的临界平衡方程,以三峡库区青石6号岸坡为例进行了计算、论证。可为其他类似顺层岸坡损伤演化计算提供借鉴,不同之处在于确定具体岸坡损伤劣化的GSI(t)函数式。  相似文献   

7.
三峡工程库区175 m试验性蓄水10多年后,峡谷区岩溶岸坡水位变动带岩体劣化强烈,新生或加速形成了大量地质灾害,引起研究人员和政府的广泛关注。文章从微细观到宏观、由点到面,采用野外调查、室内试验分析了三峡库区岩溶岸坡岩体劣化及其灾变效应。野外调查显示,溶蚀岩体劣化集中发育于三峡、大宁河等干支流峡谷区域,其中以巫峡共约10 km长的岸坡最为典型。溶蚀岩体劣化机制包括以机械搬运为主的物理机制、以溶蚀/溶解为主的化学机制和以应力腐蚀断裂为主的力学机制。岩体劣化导致溶蚀岩体结构降级,岸坡局部持续形变。岩体劣化、岩溶水动力作用、岸坡形变相互促进,推动了岸坡灾变的发生。大量案例表明,岩溶岸坡岩体劣化引起灾变效应早期,破坏浅表层、岸坡不断后退。岩体劣化影响下岩溶岸坡破坏模式包括崩塌、滑移和倾倒3种主要类型。库水位长期变动导致的溶蚀岩体劣化带来了前所未有的高陡岸坡灾变威胁,可能将三峡库区地质灾害带入新的发育阶段。本研究将为三峡库区岩溶地质灾害隐患点识别与防灾减灾提供技术支撑。  相似文献   

8.
自三峡库区2009年蓄水至175 m以来,库水位常年在高程145-175 m间波动,形成了高差30 m的水位变动带(消落带)。由于该变动带上岩体长期在饱和浸泡-风干曝晒的循环作用下,其物理力学强度不断减弱,于是大量的新生危岩和滑坡塌岸相继形成,此类地质灾害不仅点多面广,且破坏频率高,诱发因素甚多。本文以黄南背西危岩体为典型案例,基于影像资料、原位测试数据以及离散元数值模型深入分析了该危岩体未来失稳的破坏模式和变形成因机理,重点对该危岩体的应力场、形变场和基座岩体受水位作用影响展开研究。研究表明黄南背西危岩体发生失稳破坏的三种因素:1)底部岩体出现压溃破坏,2)底部破碎岩体受水影响劣化加剧,3)基座角砾岩岩体遇水水解。危岩体发生破坏将从其底部岩体出现压溃开始,上部岩体随后下错滑移,失稳岩体发生倾倒、滑移和坠落的复合型破坏。  相似文献   

9.
亢金涛  吴琼  唐辉明  胡新丽  范亮亮  张抒  易鑫 《地球科学》2019,44(11):3950-3960
岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制是揭示三峡库区库岸消落带巴东组软硬互层岩体强度渐进劣化机理和评价库岸边坡稳定性的关键问题.以三峡库区典型"易滑岩组"巴东组第二段红色系列的砂岩与粉砂质泥岩互层岩组为研究对象,考虑干湿循环条件下岩石/结构面参数劣化,开展了软硬互层岩体单轴压缩数值试验,分析了软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的贡献度及其与岩层倾角的关系.研究结果表明,不同岩层倾角条件下,软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的影响有明显区别,以软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的贡献度为依据,将岩层倾角全范围划分为软岩控制区、软岩-硬岩-层面共同控制区、沿层面滑移失稳破坏区和硬岩控制区,揭示了岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制及其受岩层倾角的影响,为进一步研究库岸消落带巴东组软硬互层岩体强度渐进劣化机理奠定了基础.   相似文献   

10.
三峡库区水位消落带岩体劣化松动使得部分岸坡加速朝不稳定方向演化,给溶蚀岩体岸坡带来了工程灾变效应问题.本文提出了利用高程175 m附近区域的岩体替代未受蓄水影响的岩体的"比拟法",统计分析岩体劣化情况.定义、改进和统计了岩体劣化变量Det、岩体体积节理数增量△Jv和地质强度指标变化值ΔGSI.通过对库区10个典型溶蚀岩体的劣化程度及地质强度指标的研究,提出溶蚀岩体劣化程度的量化指标,并建立其与地质强度指标的相关关系.岩体劣化造成了地质强度指标的下降;强烈劣化时,ΔGSI≤-4.0;ΔGSI与Det满足指数函数关系,ΔGSI和△Jv满足线性负相关.提出了岩体劣化随时间演化的三种模式,其中两种模式最终会进入加速劣化状态;岩体结构经由两条路径演变为碎裂结构.同时,讨论了岩体劣化与岸坡亚稳定阶段的关系.研究成果为系统开展三峡库区峡谷段消落带岩体劣化程度勘查、监测和风险防控提供了新的方法.  相似文献   

11.
水位升降条件下库岸边坡变形失稳问题是水库建设中必须考虑的重要安全性问题。二元结构是库岸岩土体的一种特有结构,其变形破坏失稳有特殊的力学机制及规律。为揭示库岸边坡处于不同坡角及不同土岩界面倾角条件下的失稳机制,尤其是水位变化条件下库岸岩土体浸润线的分布及演化特征,文章通过构建水位升降条件下的二元结构库岸边坡物理实验模型,借助监测及摄影的技术手段观测边坡土体内浸润线及岩土体变形破坏特征,揭示二元结构库岸边坡的变形失稳机制。研究结果表明:二元结构库岸边坡在水位升降条件下整体坡角的改变会引发不同的变形破坏模式:55°边坡以垮塌失稳为主,35°边坡稳定性较好,45°边坡易发生由坡脚破坏牵引的局部失稳;土岩界面倾角对边坡稳定性也产生较大影响,较大的倾角易于引发坡体沿土岩界面发生滑动失稳。本研究结果可为揭示二元结构库岸边坡失稳致灾机制及有效防治提供借鉴。  相似文献   

12.
中等倾角岩层顺向坡,受坡体结构和岩体物理力学性质控制,多存在变形、崩塌、滑坡等工程地质问题,常常会诱发大规模的地质灾害。该类斜坡潜在滑动面不直接出露地表,一般具有变形机制复杂、隐蔽性强和危害大的特点,是滑坡领域关注与研究的重点。拖担水库大坝左岸为一古滑坡,在水库扩建开挖过程中,诱发古滑坡体复活。在分析古滑坡工程地质条件的基础上,结合地质勘察和变形监测结果,研究了其变形特征及形成机制。研究结果表明:①左岸古滑坡具有岩层倾角“上陡下缓”、滑体底部存在反倾坡内的剪切破碎带、滑床岩体产生弧状弯曲的特点;②古滑坡体为一基岩顺层滑坡,滑动模式为“滑移(弯曲)—剪断”型,其变形破坏过程包括三个阶段:弯曲隆起阶段、滑移剪出阶段和扰动变形阶段;③该类斜坡变形破坏后,坡体易沿“上陡下缓”的椅型软弱层面发生二次滑动,滑坡控制关键是对下部变形区的保护。  相似文献   

13.
西南山区采动斜坡多具有高陡临空地形、“上硬下软”坡体结构、岩层平缓、陡倾节理面发育、开采活动强烈等特点,往往发育与采空区边界对应的宽大裂缝,未见明显的移动盆地,形成机制复杂。本文以贵州都匀市接娘坪变形体为例,通过数值模拟分析了采动斜坡裂缝成因机制。研究结果表明,受坡体内煤层采空及高陡临空地形影响,斜坡覆岩沿陡倾节理开裂并一直向上延伸到地表,随着重复采动的进行,裂缝开裂程度增大,有向临空面倾倒破坏的趋势,斜坡未形成明显的沉陷盆地。斜坡裂缝形成演化过程包括开采扰动-坡顶拉裂-裂缝加剧等3个阶段,斜坡在多煤层重复采动条件下裂缝变形经历4个阶段,即初始变形阶段、缓慢变形阶段、急剧变形阶段、稳定变形阶段。  相似文献   

14.
恩施盆地红层分布范围广,存在大量的斜坡或人工高陡边坡。由于红层岩体工程地质性质的特殊性,在自然地质作用和人类工程活动的影响下,边坡产生变形破坏,造成人员伤亡和财产损失,对城市市政工程和道路工程建设产生了较大的影响和制约。本文通过恩施盆地红层边坡的野外工程地质调查、钻探、现场试验(压水和渗水试验)、样品采集和室内岩体特性参数测试等工作,基本查清了红层的工程地质特性、水理特性和边坡变形特点。恩施盆地红层可分为“硬砂岩”和“软砂岩”,前者由胶结较好的粉砂岩和砂岩组成,强度较高,透水性差,属相对隔水层;后者由胶结较差的砂岩构成,强度低,透水较强,为含水层。边坡变形破坏规模较小,但点多、危害较大。本文从运动方式和影响因素两个方面对边坡变形破坏模式进行研究,依据斜坡岩土体运动方式,红层边坡变形破坏划分为:顺层岩质滑坡、坠落式崩塌、倾倒式崩塌3种;按变形破坏影响因素,边坡变形破坏划分为:软硬互层红砂岩差异风化、顺层结构面和切层结构面不利组合、人工开挖扰动3种,并分析了各类变形破坏模式的特点和变形破坏过程,对恩施盆地及同类型地区的红层边坡变形破坏的防治具有指导意义及参考价值。  相似文献   

15.
李鹏  苏生瑞  黄宇  苏卫卫  高雄飞 《岩土力学》2015,36(12):3576-3582
以四川省S303线卧龙至巴郎山段K70+340~K70+388处崩塌为研究对象,采用地质力学分析和UDEC离散元模拟相结合的方法,揭示了震裂-滑移式崩塌形成机制及其变形破坏规律。结果表明:该类型崩塌主要发生在有陡倾结构面的顺层岩质斜坡;地震波对斜坡岩体主要为拉剪破坏,并呈现出坡顶和坡面处拉应力大于坡体内部的规律;地震力对斜坡的影响表现出顶部较下部、坡面较坡内变形快、变形量大的特点;随地震波加速度的幅值的增大,斜坡动力响应也越强烈,崩塌体的位移也越大;震裂破坏过程可以归纳为6个阶段,即(1)地震作用下岩体的损伤和拉张裂缝的形成;(2)拉张裂缝的拓展和软弱滑移面的贯通;(3)崩塌体整体震散和局部岩块的滑移;(4)局部岩块失稳,产生岩体的坠落、弹射、抛射和滚落现象;(5)岩体整体产生坠落、弹射、抛射和滚落;(6)崩塌体趋于稳定。该问题的研究不仅可以为地质灾害的分析提供新方法,而且对震区防灾、减灾具有一定的指导意义。  相似文献   

16.
大跨度采空影响顺倾构造山体侧向变动的复合机理   总被引:1,自引:0,他引:1  
采空区地表山体侧向变动,不同于一般天然山坡,也与采空区一般上覆岩层的变形破坏有异;它是二者复合机理的效应。本文在分析考察了毗邻电厂的横山顺倾构造山体,剖析了地下采空情况后认为,山体侧向变动中,软弱夹层有决定性作用;变动范围、速率与规模,与地下采空有关。从而又利用地质力学模型试验和数值模拟,探索了采动引起山体应力场及变动规律。结果表明,山体岩层的变形、位移、破坏,由直接顶板向地表发展;采空坍陷诱发了软弱夹层的蠕滑,则产生山体侧向滑移;电厂区地表隆起变形是山体侧向滑移挤压地基土的反映。通过现场实际调究、变形观测资料分析与数值模拟和模型试验的对比研究,提出了坍落拱梁的成生效应、挤压蠕滑效应、失稳效应;揭露了顺倾构造山体在采空影响下,具有地表、地下的复合临空面的复合应力场中复合变动的复合机理;并提出这种山体侧向变动机理的典型地质模式,借以论证山体稳定性。  相似文献   

17.
周洪福  符文熹  叶飞  陈正峰 《地球科学》2021,46(4):1437-1446
斜坡变形破坏和稳定性分析是各类工程建设中高度关注的问题.采用实例调查、理论分析、数值计算等技术方法,以雅砻江某水电工程坝址区右岸顺层岩质斜坡为例,研究总结了斜坡发育滑移-剪损变形破坏的成因机理、发育特征以及与弱面倾角和发育深度的关系.研究表明,滑移-剪损变形破坏通常发育在力学性能相对较差的薄层、互层状结构的顺层岩质斜坡或斜坡强-弱风化带内.斜坡发育滑移-剪损变形破坏与陡倾坡外弱面的倾角和发育位置密切相关.倾角在45°~65°之间或距斜坡表部水平距离小于80 m的弱面对斜坡发育滑移-剪损变形破坏的影响控制作用明显,并且弱面距斜坡表部水平距离比弱面倾角对斜坡发育滑移-剪损变形破坏的影响控制作用更强.研究成果可补充完善岩质斜坡变形破坏类型,具有重要的工程意义和实践价值.   相似文献   

18.
拟建的川藏铁路某特大桥是一座重要的控制性桥梁,其桥址区的地质安全风险评价具有重要的工程意义。该特大桥成都侧岸坡三面临空,海拔高差大,岩性复杂多变,岩体结构和完整性差,风化卸荷强烈,浅表部危岩体发育,调查表明成都岸八曲侧斜坡曾发生较大规模顺层岩质崩滑。采用遥感解译、剖面测量及稳定性计算等技术方法,调查成都侧岸坡地形地貌、地层岩性、结构面发育及变形破坏等特征,分析评价特大桥成都岸八曲侧顺层岩质斜坡稳定性。结果表明:天然和暴雨工况下,斜坡稳定系数大于1.1;强震(PGA>0.3 g)工况下,斜坡稳定系数小于1.0,可能出现局部或整体失稳破坏。建议在清除斜坡表部危岩体的基础上,进一步深入研究八曲侧顺层岩质斜坡未来可能出现的变形破坏范围和程度,提出针对性工程防治措施建议。  相似文献   

19.
库水位变动是诱发库岸边坡变形失稳的主要因素。为探究库水位变动下倾倒变形岩体破坏后形成的堆积体斜坡的地下水动力作用,以云南澜沧江的苗尾水电站赵子坪滑坡为研究对象,通过现场地质调查和勘探确定了滑坡形态和坡体结构特征;再结合监测数据深入分析了滑坡在地下水动力作用下的变形失稳机制,并基于非饱和土力学理论和有限元法对其失稳机制进行进一步验证。结果显示:赵子坪岸坡为原始倾倒岩体变形破坏后上部强倾倒岩体沿着折断面发生滑动而形成的堆积体斜坡,内部呈层状堆积的片石表明其还保留了部分倾倒岩体的结构特征。水库蓄水后,由于松散的倾倒堆积体为库水渗入坡体创造了良好的条件,地下水位随库水位升高而快速升高,导致孔隙水压力增大而滑坡阻滑段有效应力减小,从而造成稳定性降低,滑坡易沿着由倾倒折断面演化而成的基覆界面发生滑动破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号