首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高分辨率GRAPES模式如3?km模式对地形的识别程度更高,模式中各高度坐标面可识别的地形坡度也更大,地形作用带来的气压梯度力计算误差和平流输送误差更突出.平缓地形追随坐标可以通过多种方式衰减坐标面上的地形影响进而减小这些计算误差.选择一种逐层平滑地形的平缓地形追随坐标,基于GRAPES-3km模式进行理想试验和批量模...  相似文献   

2.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   

3.
In this work, we have investigated the evolution of the summer air–sea interaction in the North Atlantic Ocean and the physical processes involved using reanalysis data and model simulation. It is found that an atmosphere disturbance over the North Atlantic Ocean in the preceding winter favors the build-up of a North Atlantic horseshoe-like sea surface temperature anomaly (SSTA) pattern in the summer through modifying the northeast trade winds and changing ocean upwelling and downwelling. The changed ocean condition (SSTA, upwelling, and downwelling) further intensifies the atmosphere disturbance as a positive feedback. The thermal advection of the atmosphere disturbance weakens the SSTA pattern in the following autumn and winter. The anomalous circulation associated with the air–sea interaction in the observations is characterized by a barotropic structure in the middle and high latitudes of the North Atlantic Ocean. The baroclinic component is enhanced in the model simulation, particularly in the seasons from summer to winter. The life cycle of the air–sea interaction is about 1 year in both the observations and simulations.  相似文献   

4.
The response of the North Atlantic subpolar gyre (SPG) to a persistent positive (or negative) phase of the North Atlantic oscillation (NAO) is investigated using an ocean general circulation model forced with idealized atmospheric reanalysis fields. The integrations are analyzed with reference to a base-line integration for which the model is forced with idealized fields representing a neutral state of the NAO. In the positive NAO case, the results suggest that the well-known cooling and strengthening of the SPG are, after about 10 years, replaced by a warming and subsequent weakening of the SPG. The latter changes are caused by the advection of warm water from the subtropical gyre (STG) region, driven by a spin-up of the Atlantic meridional overturning circulation (AMOC) and the effect of an anomalous wind stress curl in the northeastern North Atlantic, which counteracts the local buoyancy forcing of the SPG. In the negative NAO case, however, the SPG response does not involve a sign reversal, but rather shows a gradual weakening throughout the integration. The asymmetric SPG-response to the sign of persistent NAO-like forcing and the different time scales involved demonstrate strong non-linearity in the North Atlantic Ocean circulation response to atmospheric forcing. The latter finding indicates that analysis based on the arithmetic difference between the two NAO-states, e.g. NAO+ minus NAO?, may hide important aspects of the ocean response to atmospheric forcing.  相似文献   

5.
The impact of a downslope water-transport parametrization on the circulation and water mass characteristics of a global depth-level ocean general circulation model is investigated. The spreading of dense water from the formation regions into the deep ocean is known to be poorly represented in depth-level models with no bottom boundary layer resolved or attached. The new scheme is simple and intends to parametrize the effects of various oceanographic processes (rather than the processes themselves) that help dense water to descend topographic slopes by which the formation regions are separated from the world ocean. The new scheme significantly improves the large scale properties of the North Atlantic Deep Water. Changes in the North Atlantic circulation, however, are rather small. In the Southern Ocean, the exchange between the dense water formation regions on the continental shelves and the deep ocean is strengthened at the expense of deep water mass formation by open ocean convection. In all three ocean basins, the density of the deep and bottom water is higher with the new parametrization, which brings the simulations closer to observations in the Atlantic and Indian Oceans. In the Pacific Ocean, however, where the density has already been well reproduced without the downslope transport, it becomes slightly too high. The results are in agreement with those from other model studies.  相似文献   

6.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   

7.
Recent studies have indicated that the multidecadal variations of the Atlantic Warm Pool (AWP) can induce a significant freshwater change in the tropical North Atlantic Ocean. In this paper, the potential effect of the AWP-induced freshwater flux on the Atlantic Meridional Overturning Circulation (AMOC) is studied by performing a series of ocean–sea ice model experiments. Our model experiments demonstrate that ocean response to the anomalous AWP-induced freshwater flux is primarily dominated by the basin-scale gyre circulation adjustments with a time scale of about two decades. The positive (negative) freshwater anomaly leads to an anticyclonic (cyclonic) circulation overlapping the subtropical gyre. This strengthens (weakens) the Gulf Stream and the recirculation in the interior ocean, thus increases warm (cold) water advection to the north and decreases cold (warm) water advection to the south, producing an upper ocean temperature dipole in the midlatitude. As the freshwater (salty water) is advected to the North Atlantic deep convection region, the AMOC and its associated northward heat transport gradually decreases (increases), which in turn lead to an inter-hemispheric SST seesaw. In the equilibrium state, a comma-shaped SST anomaly pattern develops in the extratropical region, with the largest amplitude over the subpolar region and an extension along the east side of the basin and into the subtropical North Atlantic. Based on our model experiments, we argue that the multidecadal AWP-induced freshwater flux can affect the AMOC, which plays a negative feedback role that acts to recover the AMOC after it is weakened or strengthened. The sensitivity of AMOC response to the AWP-induced freshwater forcing amplitude is also examined and discussed.  相似文献   

8.
Using a coupled ocean–atmosphere general circulation model, we investigated the impact of Greenland ice sheet melting on North Atlantic climate variability. The positive-degree day (PDD) method was incorporated into the model to control continental ice melting (PDD run). Models with and without the PDD method produce a realistic pattern of North Atlantic sea surface temperature (SST) variability that fluctuates from decadal to multidecadal periods. However, the interdecadal variability in PDD run is significantly dominated in the longer time scale compared to that in the run without PDD method. The main oscillatory feature in these experiments likely resembles the density-driven oscillatory mode. A reduction in the ocean density over the subpolar Atlantic results in suppression of the Atlantic Meridional Overturning Circulation (AMOC), leading to a cold SST due to a weakening of northward heat transport. The decreased surface evaporation associated with the cold SST further reduces the ocean density and thus, simultaneously acts as a positive feedback mechanism. The southward meridional current associated with the suppressed AMOC causes a positive tendency in the ocean density through density advection, which accounts for the phase transition of this oscillatory mode. The Greenland ice melting process reduces the mean meridional current and meridional density gradient because of additional fresh water flux, which suppress the delayed negative feedback due to meridional density advection. As a result, the oscillation period becomes longer and the transition is more delayed.  相似文献   

9.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

10.
We herein present the CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC), which has evolved from the CLIMBER-2 EMIC. The main difference with respect to CLIMBER-2 is its oceanic component, which has been replaced by a state-of-the-art ocean model, which includes an ocean general circulation model (GCM), a biogeochemistry module, and a state-of-the-art sea-ice model. Thus, CLIMBER-3α includes modules describing the atmosphere, land-surface scheme, terrestrial vegetation, ocean, sea ice, and ocean biogeochemistry. Owing to its relatively simple atmospheric component, it is approximately two orders of magnitude faster than coupled GCMs, allowing the performance of a much larger number of integrations and sensitivity studies as well as longer ones. At the same time its oceanic component confers on it a larger degree of realism compared to those EMICs which include simpler oceanic components. The coupling does not include heat or freshwater flux corrections. The comparison against the climatologies shows that CLIMBER-3α satisfactorily describes the large-scale characteristics of the atmosphere, ocean and sea ice on seasonal timescales. As a result of the tracer advection scheme employed, the ocean component satisfactorily simulates the large-scale oceanic circulation with very little numerical and explicit vertical diffusion. The model is thus suited for the study of the large-scale climate and large-scale ocean dynamics. We herein describe its performance for present-day boundary conditions. In a companion paper (Part II), the sensitivity of the model to variations in the external forcing, as well as the role of certain model parameterisations and internal parameters, will be analysed.  相似文献   

11.
Large-scale thermohaline circulation cells in the world oceans exist due to horizontal density gradients. Owing to differential heating between equator and pole a north-south density gradient is present at the ocean surface. An additional mechanism for producing north-south density gradients is the heat and salinity transport by boundary currents in the upper parts of the world oceans. In the North Atlantic, high density sinking water is produced by a convergence of salt water from the south and cold water from the north.We have investigated large-scale thermohaline convection cells by time integrating a two-dimensional Boussinesq model. The flow is driven by an imposed density gradient at the upper boundary (mixed layer) and an externally prescribed, meridionally varying density flux in the interior of the model domain. We perform numerical simulations and through time integrations we determine equilibrium states of the model. By changing the forcing parameters slowly during the course of a time integration, we have identified regions in parameter space where a hysteretic behaviour may be found. For a given set of the forcing parameters the model has two stable equilibrium states which differ in the direction of the circulation.We have thus found that due to the nonlinear nature of the balance between advection, internal mixing and forcing more than one stable equilibrium circulation pattern can be found under a given set of external forcing parameters. This result may offer a potential explanation for the existing asymmetries between the thermohaline circulation patterns in the Atlantic and Pacific Oceans as well as possible implications for the climatic state of the oceans under changing external conditions.  相似文献   

12.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

13.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

14.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   

15.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   

16.
JFNK方法概述及其在大气全隐式非静力模式中的应用方案   总被引:3,自引:3,他引:0  
首先介绍了近年来新发展的非线性方程全隐式数值求解的JFNK方法,及其在地球流体力学方面应用计算实例.可看到,无论在计算精度还是计算效率方面,全隐式数值求解远远超过常规的半隐式计算格式.其次,还讨论了JFNK方法在气象非静力模式中应用方案,并提出了用静力假定和半隐式差分格式来构造预条件处理器,变三维求解为二维求解,简化了方程组求解难度.该方案不仅可用于差分模式,也为用譜方法求解非静力模式提供可能.  相似文献   

17.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

18.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

19.
This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.  相似文献   

20.
Abstract

A new coupled atmosphere‐ocean model has been developed for climate predictions at decade to century scales. The atmospheric model is similar to that of Hansen et al. (1983) except that the atmospheric dynamic equations for mass and momentum are solved using Arakawa and Lamb's (1977) C grid scheme and the advection of potential enthalpy and water vapour uses the linear upstream scheme (Russell and Lerner, 1981). The new global ocean model conserves mass, allows for divergent flow, has a free surface and uses the linear upstream scheme for the advection of potential enthalpy and salt. Both models run at 4° × 5° resolution, with 9 vertical layers for the atmosphere and 13 layers for the ocean. Twelve straits are included, allowing for subgrid‐scale water flow. Runoff from land is routed into appropriate ocean basins. Atmospheric and oceanic surface fluxes are of opposite sign and are applied synchronously. Flux adjustments are not used. Except for partial strength alternating binomial filters (Shapiro, 1970), which are applied to the momentum components in the atmosphere and oceans, there is no explicit horizontal diffusion.

A 120‐year simulation of the coupled model starting from the oceanic initial conditions of Levitus (1982) is discussed. The model dynamics stabilize after several decades. The maximum northward ocean heat flux is 1.4 × 1015 W at 16°N. The model appears to maintain the vertical gradients characterizing the separation between the upper and deep ocean spheres. Inadequacies in the coupled model simulation lead to decreasing temperature and salinity in the high latitude North Atlantic and to a poor simulation of the northern North Atlantic thermohaline circulation. The mass transport of the Gulf Stream is about half of observed values, while the transports of the Kuroshio and Antarctic Circumpolar Currents are similar to observations. Additional deficiencies include a climate drift in the surface air temperature of 0.006°C year‐1 due to a radiation imbalance of 7.4 Wm‐2 at the top of the atmosphere and too warm temperatures in the eastern portions of tropical oceans. The coupled model should be useful for delineating modelling capabilities without the use of flux adjustments and should serve as a benchmark for future model improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号