首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

2.
Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board Akademik Korolev in the central equatorial and southern Arabian Sea region. The net heat exchange (R n ) is found to be about 20 W m–2 for a small area (0–4° N; 55–60° E), 50% less than the dimatological value. The mean value of net radiation (140 W m–2) is less than the climatological value, which was due to higher cloud amount. The higher SST enhanced both the latent and sensible heat fluxes.The mean atmospheric circulation obtained from the upper air data is quite convincing. The mean exchange coefficient (C e ) estimated from the moisture budget is about 1.0 × 10–3 for a wind speed of 4 m s–1. This value is slightly lower than that obtained by the usual methods.National Institute of Oceanography, RC, 52-Kirlampudi layout, Visakhapatnam — 530 023.India Meteorological Department, Gauhati.  相似文献   

3.
We present the first application of a multi-stage impactor to study volcanic particle emissions to the troposphere from Masaya volcano, Nicaragua. Concentrations of soluble SO4 2–,Cl, F, NO3 , K+, Na+,NH4 +, Ca2+ and Mg2+ were determined in 11 size bins from 0.07 m to >25.5 m. The near-source size distributions showed major modes at 0.5m (SO4 2–, H+,NH4 +); 0.2 m and 5.0 m (Cl) and 2.0–5.0 m(F). K+ and Na+ mirrored the SO4 2– size-resolvedconcentrations closely, suggesting that these were transported primarily asK2SO4 and Na2SO4 in acidic solution, while Mg2+ andCa2+ presented modes in both <1 m and >1 m particles. Changes in relative humidity were studied by comparing daytime (transparent plume) and night-time (condensed plume) results. Enhanced particle growth rates were observed in the night-time plume as well as preferential scavenging of soluble gases, such as HCl, by condensed water. Neutralisation of the acidic aerosol by background ammonia was observed at the crater rim and to a greater extent approximately 15 km downwind of the active crater. We report measurements of re-suspended near-source volcanic dust, which may form a component of the plume downwind. Elevated levels ofSO4 2–, Cl, F,H+, Na+, K+ and Mg2+ were observed around the 10 m particle diameter in this dust. The volcanic SO4 2– flux leaving the craterwas 0.07 kg s–1.  相似文献   

4.
A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).List of Symbols u east-west velocity [m s–1] - v north-south velocity [m s–1] - vertical velocity in coordinate [m s–1] - w vertical velocity inz coordinate [m s–1] - gq potential temperature [K] - q moisture [kg kg–1] - scaled pressure [J kg–1 K–1] - U g the east-south component of geostrophic wind [m s–1] - V g the north-south component of geostrophic wind [m s–1] - vertical coordinate following terrain - x east-west spatial coordinate [m] - y north-south spatial coordinate [m] - z vertical spatial coordinate [m] - t time coordinate [s] - g gravity [m2 s–1] - E terrain height [m] - H total height considered in the model [m] - q s saturated moisture [kg kg–1] - p pressure [mb] - p 00 reference pressure [mb] - P precipitation [kg m–2] - vertical lapse rate for potential temperature [K km–1] - L latent heat of condensation [J kg–1] - C p specific heat at constant pressure [J kg–1 K–1] - R gas constant for dry air [J kg–1 K–1] - R v gas constant for water vapor [J kg–1 K–1] - f Coriolis parameter (2 sin ) [s–1] - angular velocity of the earth [s–1] - latitude [o] - K H horizontal eddy exchange coefficient [m2 s–1] - t integration time interval [s] - x grid interval distance inx coordinate [m] - y grid interval distance iny coordinate [m] - adjustable coefficient inK H - subgrid momentum flux [m2 s–2] - subgrid potential temperature flux [m K s–1] - subgrid moisture flux [m kg kg–1 s–1] - u * friction velocity [m s–1] - * subgrid flux temperature [K] - q * subgrid flux moisture [kg kg–1] - w * subgrid convective velocity [m s–1] - z 0 surface roughness [m] - L Monin stability length [m] - s surface potential temperature [K] - k von Karman's constant (0.4) - v air kinematic viscosity coefficient [m2 s–1] - K M subgrid vertical eddy exchange coefficient for momentum [m2 s–1] - K subgrid vertical eddy exchange coefficient for heat [m2 s–1] - K q subgrid vertical eddy exchange coefficient for moisture [m2 s–1] - z i the height of PBL [m] - h s the height of surface layer [m]  相似文献   

5.
Henry's law constants KH (mol kg–1 atm–1) for the reaction HOCl(g)=HOCl(aq) near room temperature, literature data for the associated enthalpy change, and solubilities of HOCl in aqueous H2SO4 (46 to 60 wt%) at temperatures relevant to the stratosphere (200 KT230 K) are shown to be thermodynamically consistent. Effective Henry's law constants [H*=mHOCl/pHOCl, in mol kg–1 atm–1] of HOCl in aqueous H2SO4 are given by: ln(H*)=6.4946–mH2SO4(–0.04107+54.56/T)–5862 (1/To–1/T) where T(K) is temperature and To=298.15K. The activity coefficient of HOCl in aqueous H2SO4 has a simple Setchenow-type dependence upon H2SO4 molality.  相似文献   

6.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

7.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

8.
Effect of finite sampling on atmospheric spectra   总被引:2,自引:0,他引:2  
The effect of a finite averaging time on variances is well known, but its effect on power spectra is less clearly understood. We present numerical solutions for the spectral distortion arising from sampling over a finite time interval T and show that the commonly used filter function (1 – sinc2f T), valid for variances, is a reasonable approximation for power spectra only when T 10 m , where f is the cyclic frequency, and m is the dominant time scale of the process. Our results exhibit an increasingly steeper low-frequency roll-off as T decreases relative to m , indicating that the measured spectrum is subject to a greater suppression of the lower frequencies (f > 1/T) than predicted by (1 – sinc2f T). This suppression is, in a sense, compensated by an overestimation of spectral estimates in the frequency range f 1/T.  相似文献   

9.
A review of flux-profile relationships   总被引:33,自引:5,他引:33  
Flux-profile relationships in the constant flux layer are reviewed. The preferred relationships are found to be those of Dyer and Hicks (1970), namely, H = W =(1–16(z/L))–1/2, M =(1–16(z/L))–1/4 for the unstable region, and H = W = M = 1+5(z/L) for the stable region.The carefully determined results of Businger et al. (1971) remain a difficulty which calls for considerable clarification.  相似文献   

10.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

11.
Wind and stability characteristics in the atmospheric surface boundary layer at a height,Z, less than 20 m above the sea were examined in nine oceanic investigations. The analysis lends further support to the utility of the log-linear wind-profile law in the stability region of –0.4Z/L0.9, whereL is the Monin-Obukhov length. However, it is also shown that, inasmuch as better than 90% of the measurements fall within the range of ¦Z/L¦ 0.25, and inasmuch as this correction to the drag coefficient under neutral conditions amounts to less than 10%, the familiar logarithmic wind law may be used rather than the log-linear form. A wind-stress drag coefficient,C d (=1.2×10–3 between 1.0 m Z 18.3 m), is thus recommended for general deepwater oceanic applications. The situation over shallow water, which is different, is discussed briefly.  相似文献   

12.
On the determination of the height of the Ekman boundary layer   总被引:1,自引:1,他引:1  
The heighth of the Ekman turbulent boundary layer determined by the momentum flux profile is estimated with the aid of considerations of similarity and an analysis of the dynamic equations. Asymptotic formulae have been obtained showing that, with increasing instability,h increases as ¦¦1/2 (where is the non-dimensional stratification parameter); with increasing stability, on the other hand,h decreases as –1/2. For comparison, a simple estimate of the boundary-layer heighth u determined by the velocity profile is given. As is shown, in unstable stratification,h u behaves asymptotically as ¦¦–1, i.e., in a manner entirely different from that ofh .  相似文献   

13.
Global radiation climate changes in Israel   总被引:1,自引:0,他引:1  
A detailed study of the 26-year series of global radiation K, measurements at Bet Dagan, the Israel Meteorological Service's pyranometer station in the central coastal plain of Israel, confirmed earlier findings of a significant reduction in insolation which were based on a small sample of this data set (Stanhill and Moreshet, 1992). Between 1956 and 1987 the annual reduction averaged 45.2 ± 4.3 MJ m–2, equivalent to –0.63% yr–1. Relatively the reduction was greater in midwinter (–0.91% yr–1), than midsummer (–0.56% yr–1), and under average (–0.63% yr–1), than cloudless (–0.48% yr–1) sky conditions. No changes were found in the degree of cloud cover observed at Bet Dagan.The annual decrease of K at Bet Dagan was highly correlated (r = –0.78) with the increase in the number of motor vehicles using the major roads passing within 1 km of the site: each additional vehicle passing was associated with a 21.5 J m–2 decrease in K The causal nature of this correlation was confirmed by the difference of 18% found in daily values of K measured at Bet Dagan under traffic-free and extremely congested road conditions.The reduction in the K at Bet Dagan could not, however, be attributed exclusively to the increase in motor traffic in the immediate vicinity of the site, as no significant difference was found in values measured at a relatively traffic-free site 2 km downwind of the pyranometer station. The effect of aerosol pollutants originating in Tel Aviv - the major urban and industrial connurbation upwind of Bet Dagan - was confirmed by the changes recorded in the relative size of the direct and diffuse components of K measured at this site.The importance of pollution from Tel Aviv would also explain the absence of any significant changes in the annual values of K measured at Jerusalem, a smaller and less industrialized urban center 46 km downwind of Bet Dagan, or at Qidron, an uninhabited, isolated site on the NW coast of the Dead Sea, 25 km further downwind.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 3074-E, 1990 series.  相似文献   

14.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

15.
Summary Regional climate model (RegCM2) and sulfur transport model (NJUADMS) were combined to simulate the distribution of anthropogenic sulfate aerosol burden over China, where a look up table method was applied to illustrate sulfate formation from SO2-oxidation. Direct radiative forcing of sulfate aerosol was further estimated using the scheme suggested by Charlson et al (1991). Investigations show that the annual average total sulfate column over mainland China is 2.01mg/m2 with high value in East and Central areas (more than 7mg/m2). The annual average direct radiative forcing of China is about –0.85W/m2. The forcing can reach –7W/m2 in Central and East China during the winter season. Total sulfate column shows significant seasonal variations with winter maximum-summer minimum in the Southern part of China and spring maximum-autumn minimum in the northern part of China. Strong seasonal cycles of direct radiative forcing are also found due to the influence of total sulfate column, cloud, relative humidity and the reflectivity of underlying surfaceReceived May 16, 2001; accepted August 5, 2002 Published online: May 8, 2003  相似文献   

16.
Summary In addition to global solar radiationE g , the hourly diffuse componentE d incident on a horizontal surface has been measured from February 1993 to January 1995 at a meteorological station in tropical West Africa. The measured diffuse solar irradiance data was corrected for shadow band effects. The monthly mean diurnal variations of diffuse solar irradiance obtained for identical months in the two years have been compared and found to be generally consistent. The corresponding monthly mean hourly values ofE d for identical months in 1993 and 1994 agreed to within 9% while yielding correlation coefficients greater than 0.960. In addition, the monthly mean daily totals ofE d for identical months were found to agree mostly to within 6% and showed virtually the same annual variations in both years. The monthly mean daily total values of diffuse solar radiation for most months in the two years ranged between 7.94 MJm–2d–1 and 10.50 MJm–2d–1. The monthly mean of daily hourly maximum values ofE d obtained for identical months in the two years have been discussed in relation to the dominant atmospheric conditions during these months. The results been presented here have been compared with those of some investigators within and outside the Africa region.With 8 Figures  相似文献   

17.
Concurrent measurements of the surface energy balance components (net radiation, heat storage, and sensible and latent heat fluxes) were made in three communities (open water, Phragmites australis, Scirpus acutus) in a wetland in north-central Nebraska, U.S.A., during May-October, 1994. The Bowen ratio – energy balance method was used to calculate latent and sensible heat fluxes. This paper presents results from the open water area. The heat stored in water (G) was found to play a major role in the energy exchange over the water surface. During daytime, G consumed 45–60% of R n , the net radiation (seasonally averaged daytime G was about 127 W m–2). At night, G was a significant source of energy (seasonally averaged nighttime G was about -135 Wm). The diurnal pattern of latent heat flux ( E) did not follow that of R n . On some days, E was near zero during midday periods with large R n . The diurnal variability in E seemed to be significantly affected by temperature inversions formed over the cool water surface. The daily evaporation rate (E) ranged from 2 to 8 mm during the measurement period, and was generally between 70 and 135% of the equilibrium rate.  相似文献   

18.
Summary A zonally averaged global energy balance model with feedback mechanisms was constructed to simulate (i) the poleward limits of ITCZ over the continent and over the ocean and (ii) a simple monsoon system as a result of differential heating between the continent and the ocean. Three numerical experiments were performed with lower boundary as (1) global continent, (2) global ocean and (3) continent-ocean, with freezing latitudes near the poles. Over the continent, midlatitude deserts were found and the ITCZ migrates 25° north and south with seasons. Over a global swamp ocean results do not show migration of ITCZ with time but once the ocean currents are introduced the ITCZ migrates 5° north and south with seasons. It was found that the seasonal migration of ITCZ strongly depends on the meridional distribution of the surface temperature. It was also found that continent influences the location of the oceanic ITCZ. In the tropics northward progression of quasi-periodic oscillations called events are found during the pre- and post-monsoon periods with a period of 8 to 15 days. This result is consistent with the observed quasi-periodic oscillations in the tropical region. Northward propagation of the surface temperature perturbation appears to cause changes in the sensible heat flux which in turn causes perturbations in vertical velocity and latent heat flux fields.List of Symbols vertical average - 0 zonal average - vertical mean of the zonal average - 0s zonal average at the surface - 0a zonal average at 500 mb level - latitude We now define the various symbols used in the model rate of atmospheric heating due to convective cloud formation (K/sec) - dp/dt (N/m2/sec) - density - potential temperature (K) - rate of rotation of the earth (rad/sec) - empirical constant - humidity mixing ratio - * saturated humidity mixing ratio - opacity of the atmosphere - 1,2 factors for downward and upward effective black body long wave radiation from the atmosphere - Stefan-Boltzmann constant - emissivity of the surface - D subsurface temperature (K) - a specific volume - 0xs ,0ys eastward and northward components of surface frictional stress - * vertical velocity at the top of the boundary layer (N/m2/sec) - P Thickness of the boundary layer (mb) - nondimensional function of pressure - P pressure - P a pressure of the model atmosphere (N/m2) - P s pressure at the surface (N/m2) - t time (sec) - U eastward wind speed (m/sec) - V northward wind speed (m/sec) - surface water availability - T absolute temperature (K) - heat addition due to water phase changes - g acceleration due to gravity (m2/sec) - a radius of the earth (m) - R gas constant for dry air (J/Kg/K) - C p specific heat of air at constant pressure (J/Kg/K) - k R/C p - L latent heat of condensation (J/Kg) - f coriolis parameter (rad/sec) - H s H 0s (1) +H 0s (2) +H 0s (3) +H 0s (4) +H 0s (5) (J/m2/Sec)=sum of the rates of vertical heat fluxes per unit surface area, directed toward the surface - H a H 0a (1) +H 0a (2) +H 0a (3) +H 0a (4) (J/m2/Sec)=sum of the rates of heat additions to the atmospheric column per unit horizontal area by all processes - H 0s (1) ,H 0a (1) heat flux due to short wave radiation - H 0s (2) ,H 0a (2) heat flux due to long wave radiation - H 0s (3) ,H 0a (3) heat flux due to small scale convection - H 0s (4) heat flux due to evaporation - H 0a (4) heat flux due to condensation - H 0s (5) heat flux due to subsurface conduction and convection - e * saturation vapor pressure - R solar constant (W/m2) - r a albedo of the atmosphere - r s albedo of the surface - b 2 empirical constant (J/m2/sec) - c 2 empirical constant (J/m2/sec) - e 2 nondimensional empirical constant - f 2 empirical constant (J/m2/sec) - factor proportional to the conductive capacity of the surface medium - a s constant used in Sellers model - b s positive constant of proportionality used in the Sellers model (kg m2/J/sec2) - K HT coefficient for eddy diffusivity of heat (m2/sec) - K HE exchange coefficient for water vapor (m2/sec) - h depth of the water column (m) - z height (m) - V 0ws meridional component of surface current (m/sec) - n cloud amount - G 0,n long wave radiation form the atmosphere for cloud amount n (W/m2) - B 0 long wave radiation from the surface (W/m2) - S 0,n short wave radiation from the atmosphere for cloud amount n (W/m2) - A n albedo factor for a cloud amount n - R f1 large scale rainfall (mm/day) - R f2 small scale rainfall (mm/day) With 22 Figures  相似文献   

19.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

20.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号