首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   

2.
The Jurassic–Cretaceous Woyla Group of northern Sumatra includes fragments of volcanic arcs and an imbricated oceanic assemblage. The arc rocks are intruded by a granitic batholith and are separated from the original continental margin of Sundaland by the oceanic assemblage. Rocks of the arc assemblage are considered to be underlain by a continental basement because of the occurrence of the intrusive granite and of tin anomalies identified in stream sediments. Quartzose sediments associated with the granite have been correlated with units in the Palaeozoic basement of Sumatra. From these relationships a model has been proposed in which a continental sliver was separated from the margin of Sundaland in the Late Jurassic to Early Cretaceous in an extensional strike-slip faulting regime, producing a short-lived marginal basin. The separated continental fragments have been designated the Sikuleh and Natal microcontinents. In the mid-Cretaceous the extensional regime was succeeded by compression, crushing the continental fragments back against the Sundaland margin, with the destruction of the marginal basin, now represented only by the imbricated oceanic assemblage. Modifications of this scenario are required by subsequent studies. Age-dating of the volcanic assemblage and intrusive granites in the Natal area showed that they formed part of an Eocene–Oligocene volcanic arc and are not relevant to the model. Thick-bedded radiolarian chert and palaeontological studies in the oceanic Woyla Group rocks of the Natal and Padang areas showed that they formed part of a more extensive and long-lived ocean basin which lasted from at least Triassic until mid-Cretaceous. This raised the possibility that the Sikuleh microcontinent might be allochthonous to Sumatra and encouraged plate tectonic reconstructions in which the Sikuleh microcontinent originated on the northern margin of Gondwanaland and migrated northwards across Tethys before colliding with Sundaland. Since these models were proposed, the whole of Sumatra has been mapped and units correlated with the Woyla Group have been recognised throughout western Sumatra. These units are reviewed and the validity of their correlation with the Woyla Group of northern Sumatra is assessed. From this review a revised synthesis for the Late Mesozoic tectonic evolution of the southwestern margin of Sundaland is proposed.  相似文献   

3.
The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts.The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction–accretion, paired metamorphism, arc volcanism, back-arc spreading and arc–arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous–Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1–2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc–arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc–arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.  相似文献   

4.
柴北缘赛坝沟增生杂岩组成与变形特征   总被引:1,自引:0,他引:1  
曹泊  闫臻  付长垒  牛漫兰 《岩石学报》2019,35(4):1015-1032
柴北缘构造带由高压-超高压变质岩、蛇绿岩、增生杂岩、火山-岩浆弧及前寒武纪中-高级变质岩共同构成。该构造带内的"滩间山群"岩石组合与构造属性复杂,其岩性包括中基性火山岩、碎屑沉积岩以及超基性岩和中酸性侵入岩,普遍遭受低绿片岩相变质作用和强烈构造变形。结合区域资料和地质填图结果,综合分析认为该构造带东段赛坝沟地区的"滩间山群"由火山-岩浆弧、增生杂岩、蛇绿岩三个不同构造单元岩石组成。其中增生杂岩主要是一套深海-半深海沉积组合,夹玄武岩、灰岩、硅质岩等块体,自南而北总体呈现出来自洋壳、海山和海沟环境的大洋板块地层的岩石组合特征,同时呈现与日本西南部增生杂岩极为相似的岩石组合类型。该套组合构造变形强烈,主要表现为2期构造变形。其中第一期构造变形(D1)主要表现为双冲构造和同斜紧闭褶皱,断层和褶皱轴面主体倾向为NE,形成于大洋俯冲阶段;第二期构造变形(D2)主要表现为不对称褶皱和S-C组构,可能是晚期柴达木与祁连地块发生陆-陆碰撞过程中形成的,形成时间为440~400Ma。空间上,该增生杂岩与出露于其北侧的蛇绿岩、火山-岩浆弧共同构成了相对完整的沟-弧系统,指示了寒武-奥陶纪时期,柴北缘地区曾发生古洋盆向北俯冲造山作用。  相似文献   

5.
保山地块西缘早古生代增生造山作用   总被引:1,自引:0,他引:1       下载免费PDF全文
在保山地块西缘泸水-潞西构造带内, 出露一套构造混杂岩.主体为强变形的震旦系-古生界蒲满哨群、公养河群浅变质碎屑岩夹碳酸盐岩及火山岩等复理石浊积岩系等构成, 另有硅质岩、杂砂岩、灰岩、砾岩、玄武岩及花岗岩等弱变形的构造块体.岩石时代从震旦纪至古生代, 跨度大, 高度混杂, 并有从东向西变新的逐势, 表现为后退式增生.构造样式早期为同斜倒转冲断作用的叠瓦构造, 后期表现为近N-S向剪切.玄武安山岩、流纹岩类具弧火山岩特征, 而玄武岩类则为板内火山岩, 2种火山岩分别对应岛弧与弧后拉张洋盆产物.寒武纪、奥陶纪侵位的花岗岩也分为东西2个带, 西晚东早, 代表了保山陆块西缘岩浆弧的一部分.这样就记录了洋壳俯冲消亡、增生楔形成过程的沉积、火山-岩浆、变质和构造变形的地质事件群, 也记录了保山地块西缘早古生代增生造山形成过程的地质事件, 并证明了泸水-潞西构造带在震旦纪-古生代存在一洋盆.   相似文献   

6.
中国大别-苏鲁造山带为大陆板块俯冲形成的碰撞造山带,该带北缘和内部产有原岩时代为新元古代-晚古生代的浅变质岩。这些浅变质岩对应于扬子板块北缘前寒武变质基底和扬子板块北缘古生代大陆架沉积物,形成过程于印支期扬子板块向北俯冲过程中的刮削作用密切相关,与大洋板块俯冲过程中刮削形成的加积楔具有类似的动力学过程。对大别-苏鲁造山带浅变质岩的深入研究,不仅有助于揭示大陆板块俯冲过程中高压-超高压岩石形成与折返过程,而且确定了扬子板块与华北板块之间的缝合线位置位于大别造山带北淮阳带的北部和苏鲁造山带的五莲-蓬莱群的北侧。  相似文献   

7.
Ocean Plate Stratigraphy in East and Southeast Asia   总被引:10,自引:1,他引:10  
Ancient accretionary wedges have been recognised by the presence of glaucophane schist, radiolarian chert and mélange. Recent techniques for the reconstruction of disrupted fragments of such wedges by means of radiolarian biostratigraphy, provide a more comprehensive history of ocean plate subduction and successive accretion of ocean floor materials from the oceanic plate through offscraping and underplating.Reconstructed ocean floor sequences found in ancient accretionary complexes in Japan comprise, from oldest to youngest, pillow basalt, limestone, radiolarian chert, siliceous shale, and shale and sandstone. Similar lithologies also occur in the mélange complexes of the Philippines, Indonesia, Thailand and other regions. This succession is called ‘Ocean Plate Stratigraphy’ (OPS), and it represents the following sequence of processes: birth of the oceanic plate at the oceanic ridge; formation of volcanic islands near the ridge, covered by calcareous reefs; sedimentation of calcilutite on the flanks of the volcanic islands where radiolarian chert is also deposited; deposition of radiolarian skeletons on the oceanic plate in a pelagic setting, and sedimentary mixing of radiolarian remains and detrital grains to form siliceous shale in a hemipelagic setting; and sedimentation of coarse-grained sandstone and shale at or near the trench of the convergent margin.Radiolarian biostratigraphy of detrital sedimentary rocks provides information on the time and duration of ocean plate subduction. The ages of detrital sediments becomes younger oceanward as younger packages of OPS are scraped off the downgoing plate.OPS reconstructed from ancient accretionary complexes give us the age of subduction and accretion, direction of subduction, and ancient tectonic environments and is an important key to understanding the paleoenvironment and history of the paleo-oceans now represented only in suture zones and orogenic belts.  相似文献   

8.
The Kiselyovka–Manoma accretionary complex formed at the end of the Early Cretaceous during subduction of the Pacific oceanic plate underneath the Khingan–Okhotsk active continental margin along the east of Eurasia. It is composed of Jurassic–Early Cretaceous oceanic chert, siliceous mudstone, and limestone that include a significant amount of basic volcanic rocks. The known and newly obtained data on the petrogeochemistry of the Jurassic and Early Cretaceous basalt from various parts of the accretionary complex are systemized in the paper. Based on the comprehensive analysis of these data, the possible geodynamic settings of the basalt are considered. The petrogeochemical characteristics provide evidence for the formation of basalt in different parts of the oceanic floor within the spreading ridge, as well as on oceanic islands far from the ridge. The basalts of oceanic islands are mostly preserved in the accretionary complex. The compositional variations of the basalts may be controlled by the different thickness of the oceanic lithosphere on which they formed. This is explained by the varying distances of the lithosphere from the spreading zone.  相似文献   

9.
The East Sakhalin accretionary wedge is a part of the Cretaceous-Paleogene accretionary system, which developed on the eastern Asian margin in response to subduction of the Pacific oceanic plates. Its formation was related to the evolution of the Early Cretaceous Kem-Samarga island volcanic arc and Late Cretaceous-Paleogene East Sikhote Alin continental-margin volcanic belt. The structure, litho-, and biostratigraphy of the accretionary wedge were investigated in the central part of the East Sakhalin Mountains along two profiles approximately 40 km long crossing the Nabil and Rymnik zones. The general structure of the examined part of the accretionary wedge represents a system of numerous east-vergent tectonic slices. These tectonic slices. tens to hundreds of meters thick. are composed of various siliciclastic rocks, which were formed at the convergent plate boundary, and subordinate oceanic pelagic cherts and basalts, and hemipelagic siliceous and tuffaceous-siliceous mudstones. The siliciclastic deposits include trench-fill mudstones and turbidites and draping sediments. The structure of the accretionary wedge was presumably formed owing to off-scraping and tectonic underplating. The off-scraped and tectonically underplated fragments were probably tectonically juxtaposed along out-of-sequence thrusts with draping deposits. The radiolarian fauna was used to constrain the ages of rocks and time of the accretion episodes in different parts of the accretionary wedge. The defined radiolarian assemblages were correlated with the radiolarian scale for the Tethyan region using the method of unitary associations. In the Nabil zone, the age of pelagic sediments is estimated to have lasted from the Late Jurassic to Early Cretaceous (Barremian); that of hemipelagic sediments, from the early Aptian to middle Albian; and trench-fill and draping deposits of the accretionary complex date back to the middle-late Albian. In the Rymnik zone, the respective ages of cherts, hemipelagic sediments, and trench facies with draping deposits have been determined as Late Jurassic to Early Cretaceous (middle Albian), middle Aptian-middle Cenomanian, and middle-late Cenomanian. East of the rear toward the frontal parts of the accretionary wedge, stratigraphic boundaries between sediments of different lithology become successively younger. Timing of accretion episodes is based on the age of trench-fill and draping sediments of the accretionary wedge. The accretion occurred in a period lasting from the terminal Aptian to the middle Albian in the western part of the Nabil zone and in the middle Cenomanian in the eastern part of the Rymnik zone. The western part of the Nabil zone accreted synchronously with the Kiselevka-Manoma accretionary wedge located westerward on the continent. These accretionary wedges presumably formed along a single convergent plate margin, with the Sakhalin accretionary system located to the south of the Kiselevka-Manoma terrane in the Albian.  相似文献   

10.
A section across a major Tethyan suture in northwestern Turkey is described in detail. The suture of Early Tertiary age juxtaposes two continental blocks with distinct stratigraphic, structural, and metamorphic features. The Sakarya Zone in the north is represented by Permo-Triassic accretion-subduction complexes, which are unconformably overlain by Jurassic to Paleocene sedimentary rocks. The Anatolide-Tauride Block to the south of the suture consists of two tectonic zones. The Tavsanli Zone consists of a coherent blueschist sequence with Late Cretaceous isotopic ages. This blueschist sequence is tectonically overlain by Cretaceous oceanic accretionary complexes and peridotite slabs. The Bornova Flysch Zone consists of Triassic to Cretaceous limestone blocks in an uppermost Cretaceous to Paleocene flysch. The suture is represented by a N-vergent thrust fault separating lithologies from these two continental blocks.

The orogenic history of the region can be considered in two stages. In the Late Cretaceous, the northern margin of the Anatolide-Tauride Block was subducted under the Tethyan oceanic lithosphere and was metamorphosed in blueschist-facies conditions. Blueschists were largely exhumed by the latest Cretaceous or early Paleocene, prior to the continental collision. In the second stage, during the Paleocene, the continent-continent collision produced a doubly vergent orogen involving both S- and N-vergent thrusting, but did not lead to major crustal thickening.  相似文献   

11.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

12.
新识别的“下二台”构造杂岩作为华北板块北缘东段分布的构造混杂岩带重要组成部分,其物质组成、形成时代和构造属性仍需进一步研究,这将为探讨华北板块北缘东段晚古生代构造演化提供重要依据。作者在“下二台”构造杂岩中识别出一套早-中二叠世变质火山-碎屑岩,其以变质碎屑岩为主,并夹变质火山岩,二者在野外产出上混杂在一起。变质火山岩原岩类型包括流纹岩、英安岩、安山岩、玄武安山岩,为一套钙碱性火山岩,属于准铝质-弱过铝质岩石。根据岩相学和地球化学特征,将其分为变质酸性火山岩和变质中-基性火山岩;二者均相对富集轻稀土元素,亏损重稀土元素,轻重稀土元素分馏明显,Eu负异常不明显,但变质酸性火山岩明显亏损P、Ti元素,结合高场强元素相关性特征,认为二者不是同一基性岩浆分异的产物。变质火山岩锆石LA-ICP-MS U-Pb同位素年龄为272~288Ma,代表其原岩结晶年龄,时代为早二叠世;变质酸性火山岩原始岩浆来源于地壳物质的部分熔融,变质中-基性火山岩原始岩浆来源于岩石圈地幔(俯冲带附近),并遭受了地壳物质的混染,二者均形成于活动大陆边缘火山弧环境。变质碎屑岩原岩恢复为泥砂质沉积岩和砂泥质沉积岩,相对亏损轻稀土元素,富集重稀土元素,轻重稀土元素分馏较明显,Eu异常不明显。两件碎屑岩样品锆石LA-ICP-MS U-Pb同位素年龄主要介于267~347Ma,推断其沉积下限为267Ma和269Ma,均为中二叠世;泥砂质沉积岩可能来源于再旋回的以长英质岩石为母岩的沉积岩,砂泥质沉积岩可能来源于再旋回的以长英质和镁铁质岩石为母岩的沉积岩,二者分别形成于活动大陆边缘大陆岛弧和大洋岛弧环境。下二台地区早-中二叠世变质火山-碎屑岩为“下二台”构造杂岩重要组成部分,它表明二叠纪时期华北板块北缘东段经历了三个构造演化阶段:早二叠世古亚洲洋加速俯冲,形成新的大陆弧阶段;中二叠世古亚洲洋持续俯冲,大陆弧和大洋弧碰撞阶段;晚二叠世陆-陆碰撞前阶段。  相似文献   

13.
东天山大南湖岛弧带石炭纪岩石地层与构造演化   总被引:5,自引:0,他引:5  
详细的地质解剖工作表明,东天山地区大南湖岛弧带石炭纪出露4套岩石地层组合,即早石炭世小热泉子组火山岩、晚石炭世底坎儿组碎屑岩和碳酸盐岩、晚石炭世企鹅山组火山岩、晚石炭世脐山组碎屑岩夹碳酸盐岩。根据其岩石组合、岩石地球化学、生物化石、同位素资料以及彼此的产出关系,认为这4套岩石地层组合的沉积环境分别为岛弧、残余海盆、岛弧和弧后盆地。结合区域资料重塑了大南湖岛弧带晚古生代的构造格架及演化模式。早、晚石炭世的4套岩石地层组合并置体现了东天山的复杂增生过程。  相似文献   

14.
西藏班公湖-怒江成矿带北部多龙矿集区出露的增生杂岩属总体无序、局部有序的非史密斯地层,由基质和块体2个部分组成。基质为侏罗系砂泥质复理石建造,块体由大小不等的玄武岩、砂岩、硅质岩、泥质灰岩、超基性岩等组成。增生杂岩系变形强烈,发育强烈的构造置换作用,块体与基质之间由透入性挤压面理或剪切面理分隔,为典型造山带大陆增生边缘的增生杂岩。这套增生杂岩形成于侏罗纪羌塘陆块南缘的侧向增生边缘,发育于晚古生代增生杂岩系之上,与班公湖-怒江中特提斯洋壳侏罗纪时期向羌塘陆块的俯冲作用有关,侏罗纪—白垩纪羌多岩浆弧为在这套增生楔基础上发育起来的火山-岩浆弧。班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的识别为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。  相似文献   

15.
增生型造山带形成于活动大陆边缘,以宽阔且延伸稳定的增生杂岩为代表,在大洋板块向大陆板块发生缓慢而复杂的俯冲、碰撞过程中,大洋板块、火山岛弧、海山、大陆碎块等沿逐渐后退的海沟拼贴,仰冲板块前端发生刮削作用、底垫作用和构造剥蚀等作用,使得洋壳物质在海沟内壁增生,具体表现为增生杂岩的形成、垂向和侧向的生长,最终实现陆壳的横向生长。陆陆碰撞期间,加入俯冲通道的被动陆缘也将遭受类似的构造作用,从而形成规模较大的陆缘增生杂岩。因此,造山带增生杂岩的物质组成与结构、形成机制和演化过程对解剖洋陆转换过程中的复杂地球动力学过程具有极为关键的作用。西藏南羌塘增生杂岩是近年来通过走廊性地质填图以及多学科交叉工作得到的研究认识。然而,该增生杂岩的物质组成和结构等关键内容还未得到系统的研究,严重阻碍了对其形成机制和演化过程的理解。因此,本文以时空演化为主线,解剖杂岩物质组成和结构,结合俯冲期和同碰撞期大地构造单元,洞察南羌塘增生杂岩的形成演化过程。本次研究显示:(1)南羌塘增生杂岩具有俯冲杂岩在下、褶皱-冲断带在上的双层结构,二者间为大规模的拆离断层系统;(2)俯冲杂岩内不只含有洋板块地层单元,还含有大量的南羌塘被动陆缘物质;(3)褶皱-冲断带虽主要由被动陆缘物质变形改造而来,也含有属于洋板块地层系统的海山和洋内岛弧等物质。结合同俯冲期弧前盆地和楔顶盆地、同碰撞期晚三叠世岩浆的时空分布,高压变质岩的形成与折返时限,南羌塘增生杂岩内的双层结构应主要是陆陆碰撞过程中被动陆缘俯冲的结果,少量形成于大洋俯冲期间的俯冲反向过程中。本文提出的陆缘俯冲导致南羌塘增生杂岩双层结构的研究认识,对理解南羌塘地壳结构、中生代盆地基底形成演化具有较为重要的意义。  相似文献   

16.
Cretaceous sedimentary and volcanosedimentary rocks from northwestern Kamchatka are considered. The stadial analysis has revealed variable impacts of three major provenances upon the Cretaceous Penzhina sedimentary basin. The provenances were composed of volcanic and volcanosedimentary rocks (Uda–Murgal island arc and Okhotsk–Chukotka volcanic belt) and granitic–metamorphic rocks (the mature Asian continental margin). Sediments were largely accumulated owing to the erosion of island-arc volcanics during reactivation of the Uda–Murgal island arc (Hauterivian–Barremian) or the Okhotsk–Chukotka volcanic belt (middle Albian–Cenomanian). Eroded granitic–metamorphic rocks of the mature Asian continental margin (Berriasian–Valanginian) or Asian metamorphic–volcanic rocks (Santonian–Campanian) were supplied to the basin during tectonically quiet periods (Berriasian–Valanginian and late Cenomanian–Campanian). Compositional changes in provenances were related to active tectonic processes at the continental margin, including evolution and closure of the Uda–Murgal island-arc system and origin of the Okhotsk–Chukotka volcanic belt. The postsedimentary modification of Cretaceous rocks deposited in forearc trough beyond the tectonically active accretionary prism is characterized by a low degree of clastic component alteration.  相似文献   

17.
The Cretaceous units exposed in the northwestern segment of the Colombian Andes preserve the record of extensional and compressional tectonics prior to the collision with Caribbean oceanic terranes. We integrated field, stratigraphic, sedimentary provenance, whole rock geochemistry, Nd isotopes and U-Pb zircon data to understand the Cretaceous tectonostratigraphic and magmatic record of the Colombian Andes. The results suggest that several sedimentary successions including the Abejorral Fm. were deposited on top of the continental basement in an Early Cretaceous backarc basin (150–100 Ma). Between 120 and 100 Ma, the appearance of basaltic and andesitic magmatism (~115–100 Ma), basin deepening, and seafloor spreading were the result of advanced stages of backarc extension. A change to compressional tectonics took place during the Late Cretaceous (100–80 Ma). During this compressional phase, the extended blocks were reincorporated into the margin, closing the former Early Cretaceous backarc basin. Subsequently, a Late Cretaceous volcanic arc was built on the continental margin; as a result, the volcanic rocks of the Quebradagrande Complex were unconformably deposited on top of the faulted and folded rocks of the Abejorral Fm. Between the Late Cretaceous and the Paleocene (80–60 Ma), an arc-continent collision between the Caribbean oceanic plateau and the South-American continental margin deformed the rocks of the Quebradagrande Complex and shut-down the active volcanic arc. Our results suggest an Early Cretaceous extensional event followed by compressional tectonics prior to the collision with the Caribbean oceanic plateau.  相似文献   

18.
Abstract

— Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya.

During the Early Cretaceous, the Indian passive margin recorded basaltic magmaüc activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt.

Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement.

The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.  相似文献   

19.
青藏高原中的古特提斯体制与增生造山作用   总被引:28,自引:12,他引:16  
青藏高原古特提斯体系的特征表现为古特提斯洋盆中多条状地体的存在,多俯冲、多岛弧增生体系的形成和多地体汇聚、碰撞造山的动力学环境,其构架包括4条代表古特提斯洋壳残片的蛇绿岩或蛇绿混杂岩(昆南-阿尼玛卿蛇绿岩带、金沙江-哀牢山-松马蛇绿岩带、羌中-澜沧江-昌宁-孟连蛇绿岩带和松多蛇绿岩带)、5条火山岩浆岛弧带(布尔汗布达岛弧岩浆带、义敦火山岩浆岛弧带、江达-绿春火山岛弧带、东达山-云县火山岛弧带和左贡-临沧岛弧-碰撞岩浆带)、4个陆块或地体(松潘-甘孜地体、羌北-昌都-思茅地体、羌南-保山地体)、3条洋壳深俯冲形成的高压-超高压变质带(金沙江得荣高压变质带、龙木错-双湖高压变质带、松多高(超)压变质带),以及5条弧前增生楔或增生杂岩(西秦岭增生楔、巴颜喀拉-松潘-甘孜增生楔、金沙江增生楔、双湖-聂荣-吉塘-临沧增生楔、松多增生杂岩)。古特提斯洋盆的俯冲增生造山作用普遍存在于青藏高原古特提斯复合造山体中,构成与多条古特提斯蛇绿岩带(缝合带)相伴随的俯冲增生杂岩带(链)。古特提斯俯冲增生杂岩带包括由弧前强烈变形的沉积增生楔、以及高压变质岩、岛弧岩浆岩、蛇绿岩和外来岩块组成的混杂体,代表在洋盆俯冲过程中的活动陆缘的地壳增生。  相似文献   

20.
The Raskoh arc is about 250 km long, 40 km wide and trends in ENE direction. The arc is convex towards southeast and terminated by the Chaman transform fault zone towards east. This arc is designated as frontal arc of the Chagai-Raskoh arc system. The Late Cretaceous Kuchakki Volcanic Group is the most widespread and previously considered the oldest unit of the the Raskoh arc followed by sedimentary rock formations including Rakhshani Formation (Paleocene), Kharan Limestone (Early Eocene) and Nauroze Formation (Middle Eocene to Oligocene), Dalbandin Formation (Miocene to Pleistocene), and semi-unconsolidated Subrecent and Recent deposits. The Rakhshani Formation is the most widespread and well-exposed unit of the Raskoh arc. During the present field investigation the Rakhshani forma-tion in the southeastern part of the Raskoh arc, is identified as an accretionary complex, which is designated as Raskoh accretionary complex. The Raskoh accretionary comple is subdivided into three units: (a) Bunap sedimen-tary complex, (b) Charkohan radiolarian chert, and (c) Raskoh ophiolite melange. The Bunap sedimentary complex is farther divided into three tectonostratigraphic units viz., northern, middle and southern. Each unit is bounded by thrust faults, which is usually marked by sheared serpentinites, except northern unit, which has gradational and at places faulted contact with the Kuchakki Volcanic Group. The northern unit is mainly composed of allochthonous fragments and blocks of limestone, sandstone, mudstone and the volcanics in dark gray, greenish gray and bluish gray siliceous flaky shale. At places the shale is metamorphosed into phyllite. This unit is thrust over the middle unit, which exhibits relatively a coherent stratigraphy, represented by greenish gray calcareous flaky shale with intercalation of thin beds and lenticular bodies of mudstone, sandstone and limestone. The middle unit is again thrust over the southern unit, which is mainly composed of large exotic blocks of volcanic rocks, limestone, sand-stone, mudstone and conglomerate embedded in dark gray, greenish gray and bluish gray siliceous flaky shale which is generally moderately argillized. The unit is thrust over the Kharan Limestone. During the present field investigation about 350 meter thick sequence of thin-bedded maroon and green chert intercalated with the siliceous flaky shale of the same colour are discovered within this unit, which is found in the southeastern part of the Ras-koh arc. This chert sequence occurs on the margins of a large exotic block (350m X 3 km) of volcaniclastic rocks of unknown origin, which makes an overturned syncline. This chert sequence is developed on its both limbs and has lower faulted contact with the Bunap sedimentary complex. Two samples collected from this chert sequence yielded radiolarian fauna, which include Parvicingula sp., Laxto-rum sp., Parahsuum cf. simplum, Parahsuum sp., Nassellaria gen. et sp. indet., Hsuum cf. Matsuokai., Archaeo-spongoprunum sp., Nassellaria gen. et sp. indet. and Hagias gen. et sp. indet., Tricolocapsa sp., Hsuum sp., Ris-tola sp., Archaeospongoprunum sp. and Tritrabinate gen. et sp. indet. This radiolarian chert sequence represents the late Early to Middle Jurassic pelagic sediment deposited in Ceno-Tethyan ocean floor; prior to the inception of volcanism in the Raskoh arc and accreted with the arc during Late Cretaceous to Eocene along with the Bunap sedimentary complex of Late Jurassic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号