首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
For the static pressure pile, the most important is to determine the standard value of ultimate bearing capacity of single pile. At present, the bearing capacity of pile foundation is usually determined by the cone penetration test (CPT) test. The empirical formula was used in practice, but the effect of excess pore water pressure generated in the penetration on the measured cone-tip resistance and side friction is neglected. In this study, based on the field test results at Fengyu playground at Yancheng Institute of Technology by CPT and CPTU methods, the bearing capacity of pile was predicted by the standardized methods, the LCPC (France method) and CPTU direct prediction methods. The prediction was also compared with the results by the static load test method. The prediction accuracy of the CPTU method was then discussed as well. The results reveal that the accuracy of the CPTU method was the highest, which was consistent with the results obtained by the static load test method. It is the best method and worthy of being applied for predicting bearing capacity of piles in engineering applications.  相似文献   

2.
Helical piles present a possible alternative to driven displacement piles in the offshore sector. While this type of pile is used widely in the onshore environment, design methods tend to be highly empirical and there is considerable uncertainty around the bearing resistance and the installation resistance required to install large diameter piles necessary to resist uplift. The paper combines a theoretical model for estimating torque resistance from the literature with a cone penetration test (CPT)-based model originally developed to estimate the axial resistance of helical piles and to predict the installation torque required to install piles in sand. The model appears to be able to capture the general installation behavior of piles across a range of scales and in various sand states.  相似文献   

3.
Piling procedure may disturb the surrounding soil, due to the installation particularly for cast-in-place piles. It causes a reduction in the soil strength parameters and, consequently, pile capacity. To overcome shortcomings and also for improving piles’ capacity, postgrouting as a compensation method is recognized and more developed in recent years. Helical piles, those are used widely in marine and land projects, although, are driven by torque implementation, but soil disturbance is noticed, where number of the helices become up to 3 and more. In this paper, an experimental study program is performed by frustum-confined vessel (FCV) to investigate bearing capacity of model helical piles and also postgrouted cases’ performance. FCV has been used because of its linear distribution of vertical and horizontal stresses from zero at top to maximum at bottom which simulates real field stress conditions. Through experimental study, small-scale helical model piles were made of 4-mm-thick steel plate and have been used with a length of 750?mm. The shaft and helix diameters of model piles have been 32 and 89?mm, respectively. So, the helix-to-shaft ratio (wing ratio) was about 2.8. The helical model piles installed in fine-grained sand as a surrounding soil and then axial loading tests before and after grouting were performed to achieve ultimate pile capacity. Results indicated postgrouting can improve both ratios of toe and frictional soil–pile interactions including upgrading β and Nt factors. In addition, the post grouting phenomena can change the pile geometry due to treated soil bond, resulting better functioning. Therefore, it is a proper method to improve helical piles performance and compensate installation effects in capacity mobilization.  相似文献   

4.
Abstract

Open‐pipe piles are widely used for offshore structures. During the initial stage of installation, soil enters the pile at a rate equal to the pile penetration. As penetration continues, the inner soil cylinder may develop sufficient frictional resistance to prevent further soil intrusion, causing the pile to become plugged. The open‐ended pile then assumes the penetration characteristics of a closed‐ended pile. The mode of pile penetration significantly alters the soil‐pile interaction during and after installation. This affects the ultimate static bearing capacity (mainly in granular materials), the time‐dependent pile capacity (in clays), and the dynamic behavior and analysis of the piles.

Following a summary demonstrating the effects of pile plugging, a review of the common view of offshore pile plugging is undertaken. The interpretation of plugging by referring to the average plug length has led to the erroneous conclusion that in most piles significant plugging action does not occur.

Establishment of an analogy between soil samplers and open‐ended piles enabled correct identification of plugging by referring to the incremental changes in plug length. Examination of case histories of plugging of offshore piles revealed that beyond a certain penetration depth‐to‐diameter ratio, most piles are plugged.  相似文献   

5.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

6.
Drilled displacement piles (DDPs) are known as an alternative to conventional foundations in coastal areas, given the elimination of environmental impacts and difficulties caused by installation process of driven piles and more consistency with environment. Despite increasing employment of these piles, the extent of research works does not yet suffice the requisites to reach a routine design. This paper aims to analyze six cone penetration test (CPT)-based methods of determining the bearing capacity of DDP. The statistical and reliability-based approaches were used in two parts of assessing performance of the methods with respect to soil–pile characteristics followed by evaluating reliability of the prediction outcome. A database is compiled including 65 DDP load tests with adjacent CPT profiles. Performance of the methods are analyzed. Finally, a reliability parameter, i.e., confidence interval, is introduced to demonstrate a more realistic insight into the evaluations by expressing performance of the methods in terms of a range for possible average values of the predictions ratios, rather than simply an arithmetic mean. The study reveals that the commonly used CPT-based methods which have not been specifically developed for DDP show great potential for design. The results indicate that the investigated methods can have promising performance if some modifications are applied.  相似文献   

7.
This study has evaluated the vertical bearing capacity by conducting static load tests for noise-free and vibration-free screw pretensioned spun high-strength concrete (PHC) piles installed using two different methods (end-squirting shoe and pre-boring methods). Vertical bearing capacity differences seem to occur due to the displacement of soils near the external circumference of a pile, depending on the installation method. A method by which to evaluate the bearing capacity of screw concrete piles is suggested by considering the equations that already have been used to calculate the bearing capacity of piles. Based on static load tests and analysis, the pile installed using the end-squirting shoe method was assumed to be a bored pile and it was reasonable to use the equation proposed by the Japanese Geotechnical Society. At the same time, the pile installed using the pre-boring method was deemed a low soil displacement pile and so it was reasonable to apply the equations proposed for calculating the bearing capacity of the driven pile suggested by the Architectural Institute of Japan.  相似文献   

8.
Abstract

In onshore and offshore fields of ocean engineering, piles are used as foundation systems for various structures. Piles are classified into different types depending on their materials, geometries, and particularly, installation methods, which have advantages or limitations. Companies and engineers have developed a new group of piles, because of necessity to improve their performance in terms of increasing the bearing capacity, reducing impacts of traditional installation procedures, implementing by low- torque power equipment, and utilizing them in widely different ground conditions, including in a marine environment. In the present study, three different models of a new pile with an expander body are introduced to increase the shaft and pile-toe diameters and its self-expansion in the embedment depth under the titles of the Bubble pile (BP), Self-Expanded pile (SEP) and Wing pile (WP). The main subject of this research is to achieve increased bearing capacity, reduced installation effects, and decreased required installation torque. The frustum-confining vessel of Amirkabir University of Technology (FCV-AUT) was employed for this purpose. Up to 14 axial compressive and tensile load tests were carried out on different model piles on sand collected from Anzali shore located on the northern coast of Caspian Sea in Iran, with relative densities of 45% to 50% within FCV-AUT. Comparing the performance of introduced pile with traditional pile corresponding to the same characteristics, the results indicated a significant increase in the axial bearing capacity and reduced disturbance effect of the pile. Also, a lower installation torque of the SE pile was required compared to the helical pile. The test results also demonstrated that the new pile could resist considerable compressive and uplift loads, and could be a possible alternative to traditional piles in the onshore sector.  相似文献   

9.
针对海相软土地区螺旋钢管桩承载力低与腐蚀问题,提出一种新型压力注浆螺旋钢管桩,并设计5根足尺试验桩,进行现场抗拔承载性能试验,研究螺旋叶片直径与排布方式对成桩直径与桩基抗拔承载性能的影响.结果表明,成桩直径与螺旋叶片直径呈正相关,在每节延长段钢管末端设置螺旋叶片利于提高水泥土柱完整性,使成桩直径更为饱满,提高桩基的抗拔承载性能.将试验结果和现行规范抗拔极限承载力计算结果进行对比,计算结果约为实测平均值的94%,在此基础上提出压力注浆螺旋钢管桩抗拔承载力计算参数修正建议,为后续的设计提供参考.  相似文献   

10.
螺旋桩芯劲性复合桩(helix stiffened cement mixing pile,简称HSCM桩)是一种新型复合桩,其成桩工艺会对桩身及其承载性能有较大影响。为验证HSCM桩在软黏土中同步旋进注浆工艺的可行性,并研究其成桩参数对抗压承载性能的影响,设计了2组缩尺模型试验,包括不同叶片数量与钻进速度的HSCM桩与对比螺旋桩。通过在高岭土制备的软黏土中成桩,并进行抗压承载性能及桩身几何尺寸测试,分析HSCM桩的成桩参数与水泥土桩身间的关系。试验结果表明:同步旋进注浆工艺能够在螺旋桩周围形成倒圆台状的水泥土桩身,水泥土桩身的平均黏结直径约为叶片直径的1.17~1.35倍;适当增加叶片数量能够使水泥与土体充分拌和,提高水泥土桩身的完整性与连续性,以改善HSCM桩的成桩质量;钻进速度大幅提高会导致注浆量不足,减小水泥土桩身的黏结直径与刚度;试验条件下HSCM桩的抗压极限承载力是螺旋桩的3.83~3.93倍,桩径扩大提高了侧摩阻力,注浆工艺加固并提高了土体强度,弥补了叶片在旋进过程中扰动土体造成强度降低的问题。  相似文献   

11.
A research on super-long piles has been primarily based on cast-in-place bored piles. In this article, field tests associated with selected measuring technologies were conducted on two super-long steel pipe piles in offshore areas to investigate the behaviors and performance of super-long steel pipe piles. The strain along the pile shaft was monitored by adopting the Brillouin optical time domain reflection and fiber Bragg grating techniques. Static load tests were also conducted on two test piles to determine the bearing capacities. In addition, the axial forces, relative displacements between piles and soils and pile shaft resistances were calculated based on the measured strain. According to the results of the static load tests, the ultimate bearing capacities of the two test piles are greater than 15,000 and 15,500 kN. Both of these values meet the design requirements. In addition, the two test piles can be treated as pure friction piles, and the load transfer mechanism and relationships between the pile shafts and relative displacements are also discussed. Finally, recommendations for practical engineering and significant conclusions are presented.  相似文献   

12.
The maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of the maximum shear moduli of reclaimed ground in the Songdo area on the western coast of Korea were evaluated using various field and laboratory tests, including the standard penetration test (SPT), piezocone penetration test (CPTu), self-boring pressure meter test (SBPT), down-hole seismic test (DHT), seismic piezocone penetration test (SCPTu) and resonant column test (RCT). Soils were classified variously by using a conventional unified soil classification system and classification charts for CPTu data. For the soils containing mostly sand and silt, the soil classifications using the classification charts for CPTu data show good agreement with the unified soil classification. Based on the statistical analysis on various maximum shear moduli, new site-specific empirical correlations between the shear moduli and SPT and CPTu values were proposed. Predictions of the maximum shear moduli using the proposed correlations were compared with the data obtained from the DHT, which is comparatively exact in evaluating the maximum stiffness of soils. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of soils in western coastal area of Korea.  相似文献   

13.
Vertical uplift static loading tests of single model pile were conducted in the in-lab calcareous sand and quartz sand by emulating practical condition of full-size piles in site. The settlement, lateral deflection, axial force, and friction distribution of the pile are analyzed for each physical test. The pile behaviors in calcareous sand and quartz sand are compared. From the test results, it can be found that the pile top displacement of uplift pile in calcareous sand can be divided into two stages: the pile–sand synchronous stage and pile–sand asynchronous (relative displacement) stage. Data from uplift tests show that the heave of calcareous sand around pile top is very small, which is resulted from the mutually restraint of surface particle. The mutual restriction of surface particle leads to “bottleneck effect” and strengthens ultimate side friction of upper pile segment. In addition, the shear dilatancy and particle breakage of calcareous sand lead to the upper harden and the lower soften of side friction, respectively. Cases of calcareous sand and quartz sand show different responses to pile forming methods, which due to the sands’ different characteristics of particle breakage when compressed as well as plastic deformation under loading–unloading conditions.  相似文献   

14.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

15.
Large-scale field tests were conducted to study set-up effect in open-ended prestressed high-strength concrete pipe piles jacked into stratified soil. Four open-ended prestressed high-strength concrete pipe piles with 13 and 18 m in embedment depth were fully instrumented with fiber Bragg grating sensors and installed. Several restrike dynamic tests were performed on each test pile, with the time interval from 21.5 to 284 hours after installation. Static loading tests (SLTs) were later performed on each test pile at 408 hours after installation to substantiate the dynamic tests. Changes with time in pile bearing capacity and in the shaft and toe resistances were studied based on the results of the pile tests. The development of shaft resistance set-up in different layers was studied in particular. It was found that set-up effect in the shaft resistance is significant and the toe resistance increment was minor. The overall set-up factor of total bearing capacity was found to range from 0.09 to 0.53, and the set-up effect of friction pile is much larger than the end bearing pile. More significant set-up in shaft resistance was observed in fill and alluvium layer. The dimensionless set-up factor A for shaft resistance in marine deposits ranges from 0.5 to 1.43, and it contributes the most to the shaft resistance as the shaft resistance in marine deposits is higher.  相似文献   

16.
Piezocone penetration test(CPTu), the preferred in-situ tool for submarine investigation, is significant for soil classification and soil depth profile prediction, which can be used to predict soil types and states. However, the accuracy of these methods needs to be validated for local conditions. To distinguish and evaluate the properties of the shallow surface sediments in Chengdao area of the Yellow River Delta, seabed CPTu tests were carried out at ten stations in this area. Nine soil classi...  相似文献   

17.
承受水平荷载作用的桩基,规范中常采用m法进行桩基水平承载力的计算,地基土水平地基抗力系数的比例系数m值在规范中根据地基土的状态、类别以表格给出。在地基勘察中,现在广泛采用静力触探试验。直接利用静力触探数据给出比例系数m值。将使桩基设计所用参数更加直接准确。本文利用天津地区地层大量静力触探资料与地基土状态数据,利用统计分析回归方法,总结出地基土的液性指数IL与静力触探参数锥尖阻力qc及摩阻比Rf间的关系式,针对天津的地层土体,给出利用静力触探资料查用m值的表格,为桩基的设计计算提供资料。  相似文献   

18.
The super-long and large-diameter steel pipe piles are often adopted for the construction of offshore oil platforms in deep sea. One constructability issue related to driving heavy pipe piles is the pile running. The term pile running refers to the quick penetration of a pile into the seabed as a result of its high self-weight and low resistance from the seabed. The unexpected pile running can cause the steel wire of the hammer to break or even the loss of the hammer. A case study of pile running at an oil platform is introduced in this paper. A simplified theoretical method is proposed to explain the mechanisms of the pile running in this case. A factor of friction degradation is proposed to calculate the dynamic skin friction from the static ultimate skin friction of surrounding soil. The comparisons between the predictions to the case history show that the proposed simplified method can be used to predict the pile running condition.  相似文献   

19.
大直径超长桩的可打入分析是海洋平台打桩施工顺利进行的重要保障,土塞是否闭合的判断对于桩基可打入性分析具有较大的影响,因此,合理准确的土塞判断结果对提高桩的可打入分析的准确性具有重要的意义。以现场静力触探(CPTU)试验数据为依据,采用孔扩张理论推导了基于CPTU测试结果的桩端土的极限承载力计算公式;在求解桩端土体承载力时考虑了管桩与土体的刚度差异,同时考虑到打桩过程中的土体扰动。采用Randolph推荐的方法得到了土塞阻力,将两者进行比较,进而判断土塞的状态。通过实际工程的实测数据,对各个土层的土塞状况进行了判别,并根据判别情况采用波动方程的方法对桩基的可打入性进行了分析,将预测结果和现场的打桩记录进行了比较。计算结果显示,提出的方法与实测结果更为接近,有效地提高了桩的可打入性的预测精度。  相似文献   

20.
Most offshore and coastal structures are supported by pile foundations, which are subjected to large lateral loads due to wind, wave, and water currents. Water currents can induce scouring around piles that reduces lateral capacity and increases lateral deflection of a pile. Current design methods mostly consider the complete removal of soil layers around piles by scouring. In reality, however, scouring creates scour holes at different shapes, sizes, and depths. Their effects on the behavior of laterally loaded piles are not well investigated. A numerical model of a single pile in soft marine clay was first calibrated against field test data without scour. Then several key factors of scour were analyzed, such as the depth, width, and slope of the scour hole and the diameter and head fixity of the pile. The relationships of the ultimate lateral capacity of the single pile with the depth, width, and slope angle of the scour hole were obtained. The numerical results show that the scour depth had more significant influence on the pile lateral capacity than the scour width. In addition, the pile with a free head was more sensitive to scour than the pile with a fixed head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号