首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suction caisson (or called suction anchor) which is considered as a relatively new type of foundation of offshore structures, has been extensively studied and applied for offshore wind turbines and oil platforms. The installation of the suction caisson is of great importance in the design and construction because it can bring about several issues and further influence the performance of holding capacity in safety service. In this paper, large deformation finite element (FE) analyses are performed to model the installation of suction caisson (SC) by suction and jacking in normally consolidated clay. The penetration of the suction caisson is modeled using an axisymmetric FE approach with the help of the Arbitrary Lagrangian–Eulerian (ALE) formulation which can satisfactorily solve the large deformation problem. The undrained shear strength of the clay and elastic modulus are varied with depth of soil through the subroutine VUFIELD. The numerical results allow quantification of the penetration resistance and its dependence on the installation method. The centrifuge test and theoretical solution are used for the FE model validation. After the validation, the penetration resistance, the soil plug heave, and the caisson wall friction have been examined through the FE model. Based on the numerical results, it is shown that the ALE technique can simulate the entire suction caisson penetration without mesh distortion problem. The installation method can play an important role on the penetration resistance, namely, the suction installation reduces the penetration resistance significantly compared to the purely jacked installation. With a further study on the suction case, it is found that as the final applied suction pressure increases, the soil plug heave increases, while the penetration resistance reduces with increase of the final suction pressure. The effect of the friction of internal caisson walls has been also investigated and a conclusion is drawn that internal wall friction has a significant contribution to the penetration resistance and it can be implicitly represented by varying coefficient of internal wall friction. As for the penetration resistance, both jacked and suction installation have great dependency on the internal wall friction.  相似文献   

2.
Offshore wind power is a rapidly growing area of electricity in China. In the present paper, interaction mechanisms between the caisson for wind turbines and saturated silt sand are investigated with laboratory tests based on two different installation methods, jacking installation and suction installation. For the jacking installation process, the results indicate that the soil pressures inner and outer the skirt of the caisson vary with a similar feature and the magnitudes of the two are nearly balanced. The tip resistance plays a key role in the total jacking installation resistance. This paper examines the predictive performance of qc method and API approach for jacking installation resistance. It is demonstrated that the qc method provides better predictions. The resistance coefficients are recommended. For the case of suction installation, however, the changes of soil pressures inner and outer the skirt are contrasting. Specifically, the inner pressure and tip resistance fall dramatically, but the outer pressure increases when suction is applied. Seepage effect is found to be an important mechanism for the installation of suction caisson. The reduction ratios of the inner friction and tip resistance follow a power-function with the normalized suction. Based on the test results, a prediction method for the required suction has been developed and evaluated.  相似文献   

3.
Abstract

The performance of steel caisson during and after installation with different penetration velocities in medium dense sand is presented. The applied jacking forces, the amount of formed soil heave and bearing capacity were measured in the model tests. The influence of penetration velocities on jacking forces, soil heave and bearing capacity were also discussed in detail. The results indicated that the jacking forces for caisson in medium dense sands were significantly affected by the penetration velocity. The larger the penetration velocity, the more soil flowed into the caisson cavity during installation. This will lead to larger inner shaft resistance and in turn more jacking forces required for the same penetration depth. The height of soil heave during installation increases with penetration velocity. The m value calculated by the ratio of the volumes of the soil heave to that of the penetrated caisson wall can be used to evaluate the soil heave. The larger the applied velocity, the larger the m value and larger bearing capacity of caisson after installation. The relationship between the m value and penetration velocity can be used to control the soil heave for a steel caisson with a wall thickness to external diameter ratio of 4.2% in medium dense sand by jacking method.  相似文献   

4.
A series of model tests were conducted on Perspex-made suction caissons in saturated dense marine sand to study the sand plug formation during extraction. Suction caissons were extracted by pullout loading or by pumping air into the suction caisson. Effects of the pullout rates, aspect ratios and loading ways (monotonic or sustained) on the pullout capacity, and plug formation were investigated. It was found that the ultimate pullout capacity of the suction caisson increases with increasing the pullout rate. The sand plug formation under the pullout loading is significantly influenced by the pullout rate and the loading way. When the suction caisson is extracted at a relatively slow rate, the general sand boiling through the sand plug along the inner caisson wall occurs. On the contrary, the local sand boiling will occur at the bottom of the suction caisson subjected to a rapid monotonic loading or a sustained loading. Test results of the suction caisson extracted by pumping air into the caisson show that the pressure in the suction caisson almost follows a linear relationship with the upward displacement. The maximum pressures for suction caissons with aspect ratios of 1.0 and 2.0 during extraction by pumping air into the caisson are 1.70 and 2.27 times the maximum suction required to penetrate the suction caisson into sand. It was found that the sand plug moves downward during extraction by pumping air into the caisson and the variation in the sand plug height is mainly caused by the outflow of the sand particles from the inside of the suction caisson to the outside. When the suction caisson model is extracted under the pullout rate of 2?mm/s (0.28?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases to the maximum value with increasing the penetration depth and then reduces to zero. On the contrary, when extracted under the pullout rate of 10?mm/s (1.4?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases with increasing the pullout displacement. When extracted by pumping air into the caisson, the hydraulic gradient reaches the critical value, and at the same time, the seepage failure occurs around the suction caisson tip.  相似文献   

5.
ABSTRACT

The suction caisson is commonly a top-closed cylindrical steel structure with large diameter, short length and much thinner skirt wall thickness. The resistance to penetrating is calculated as the sum of the tip bearing capacity and the adhesion on the both sides of the skirt wall. Since the thickness of the skirt wall is very small, the downward adhesion produced by the skirt wall will cause the additional vertical stress and shear stress in the soil at the skirt tip level, increasing the skirt tip resistance. However, the increase in skirt tip resistance caused by the additional vertical stress rather than shear stress in soil at the skirt tip level was only considered, this may lead to an inaccurate estimation for the tip bearing capacity and the suction required. Thus, a modified slip-line field is put forward in this study to estimate the tip resistance. The expression of obtaining the minimum suction to install the suction caisson in clay is derived in terms of the force equilibrium. Results from calculations of the minimum suction have been proved to be in a good agreement with the measured data.  相似文献   

6.
An investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.  相似文献   

7.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2020,34(2):267-278
Suction caisson foundations are often subjected to vertical uplift loads, but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion. In order to study the uplift bearing mechanism and failure mode of suction caisson foundation, a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode. Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity. The smaller the permeability coefficient is, the higher the residual negative pressure will be. And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson. When the load reaches the ultimate bearing capacity, both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay. Combined the uplift bearing characteristics of caisson in sandy soil and soft clay, the bearing capacity composition and the calculation method are proposed. It can provide a reference for the engineering design of suction caisson foundation under vertical load.  相似文献   

8.
吸力基础与海洋工程大直径钢桩相比,具有成本低、安装周期短、对环境影响小、不受海况影响及可回收再利用等优点,近年来在海上风电工程中得到推广应用。吸力基础沉贯至海床预定位置,是其发挥承载力和确保服役稳定性的前提。海床地基土体常以分层土形式分布,且各层土体强度、压缩性和渗透性等存在显著差别,导致吸力基础吸力沉贯机理非常复杂。明确吸力基础在分层土中沉贯特性,有助于指导吸力基础在海上风电工程中的推广应用。对目前吸力基础在分层土中沉贯特性研究进行综述和总结,归纳了其沉贯机理研究进展,并对影响吸力基础在分层土中沉贯因素进行了分析;提出了分层土中吸力基础沉贯的研究方向和改进的沉贯方法。  相似文献   

9.
针对吸力式沉箱在黏性底床中沉贯安装的减阻问题,基于黏性泥沙的流变特性,开展了一系列不同振动荷载作用下的室内沉贯模型试验,分析了振动荷载对吸力式沉箱沉贯过程的影响和沉贯减阻效果。试验结果表明:在压力沉贯阶段或吸力沉贯阶段施加高频振动荷载,均能促使吸力式沉箱侧壁周围的土体发生流化,有效降低沉箱的沉贯阻力;减阻效果与振动频率和沉箱的长径比有关,与振动频率成正比,与沉箱的长径比成反比;存在一个临界频率,当振动频率大于该频率后,沉贯阻力随频率的减小不明显;施加高频振动荷载有助于减小吸力沉贯阶段沉箱内的土塞高度,促进沉箱沉贯到位。研究成果可为黏性泥沙流变减阻技术在吸力式沉箱中的应用提供理论依据和技术参考。  相似文献   

10.
A study was made to present analytical solutions of pullout load capacity for a suction caisson subjected to inclined tension in clay. The inclined tension on the skirt of the suction caisson is transformed into an equivalent system comprised of the vertical, horizontal, and moment load applied on the center of the lid. The vertical and horizontal stiffness coefficients along the skirt of the suction caisson in clay are presented by three-dimensional elastic solutions considering the nonhomogeneous and nonlinear property of clay. The vertical, horizontal, and rocking stiffness coefficient of the suction caisson on the base are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of clay. The envelopes of the horizontal and vertical ultimate load capacity for clay are presented. The yield, pullout, and failure for clay are taken into consideration. The effects of load inclination, loading depth, and aspect ratio on the pullout load capacity are shown. Behavior of the suction caisson in clay up to failure is investigated using the relationship between tensile load and displacement and that between depth, vertical, and horizontal pressure.  相似文献   

11.
筒型基础安装过程中,筒内的负压作用会导致土塞现象的出现。以试验模型为基础建立可变形离散元计算模型,通过VC++编制的程序SPSAⅡ对筒型基础负压沉贯中土塞的生成过程进行可视化模拟计算。考虑渗流力、筒壁内外摩擦阻力和筒内负压吸力作为土塞产生的主要外荷载,分别模拟渤海地区3种典型土(黏土、粉土和砂土)的情况。其中,粉土情况下。程序的收敛速度最快,黏土情况下,土塞的计算高度最接近试验测量值,数值计算结果表明该计算方法作为筒型基础施工前筒内土塞高度的预测方法是可行的。  相似文献   

12.
A series of model tests were performed on steel- and Perspex-made suction caissons in saturated dense marine sand to explore installation and extraction behaviors. The extractions of the caisson were conducted by applying monotonic loading or by pumping water into the caisson. Responses of suction caissons to pullout rates, aspect ratios, and extraction manners were examined. Test results show that a cone-shaped subsidence region occurs around the suction caisson during the suction-assisted installation. The pullout bearing capacity of the suction caisson in sand is dominated by the loading rate and the loading manner. For the suction caisson subjected to monotonic loading, the maximum bearing capacity is reached at the pullout rate of about 20.0?mm/s. The mobilized vertical displacement corresponding to the pullout capacity increases with increasing the pullout rate. The passive suction beneath the suction caisson lid reaches the maximum value when the pullout bearing capacity is mobilized. In addition, during the suction caisson extracted by pumping water into the caisson, the maximum pore water pressure in the caisson is obtained under the displacement of approximately 0.04 times the caisson diameter. The absolute values of the maximum pore water pressures for the suction caissons approximately equal those of the maximum vertical resistances at the monotonic pullout rate of 5 mm/s. When the vertical displacements of the suction caissons with the aspect ratio of 1.0 and 2.0 reach 0.92 and 1.77 times the caisson diameter, respectively, the seepage failure occurs around the caissons. Using a scaling method, the test results can be used to predict the time length required for the prototype suction caisson to be extracted from the seabed.  相似文献   

13.
A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil?structure interaction behavior.Model tests were first carried out in this study to investigate the extraction behavior of the modified suction caisson(MSC)and the regular suction caisson(RSC)in sand by reverse pumping water.The effects of the installation ways(suction-assisted or jacking installation)and the reverse pumping rate on the variations of the over-pressure resulting form reverse pumping water were investigated.It was found that neither the RSC nor the MSC can be fully extracted from sand.When the maximum extraction displacement is obtained,the hydraulic gradient of the sand in the suction caisson reaches the critical value,leading to seepage failure.In addition,the maximum extraction displacement decreases with the increasing reverse pumping rate.Under the same reverse pumping rate,the final extraction displacements for the RSC and MSC installed by suction are lower than those for the RSC and MSC installed by jacking.The final extraction displacement of MSC is almost equal to that of the RSC with the same internal compartment length.Based on the force equilibrium,a method of estimating the maximum extraction displacement is proposed.It has been proved that the proposed method can rationally predict the maximum extraction displacement and the corresponding over-pressure.  相似文献   

14.
Suction-induced seepage is pivotal to the installation of caisson foundations in sand. Indeed, the upward pore water flow on the inner side of the caisson wall causes a release of a fraction of soil resistance due to the reduction of the lateral effective stress. A safe caisson installation requires a reliable prediction of soil conditions, especially soil resistance and critical suction for piping. These soil conditions must be predicted for the whole installation process.In this paper, we examine the effect on such prediction of the assumed permeability profile, which is described as a function of depth below the mudline. This study is motivated by the fact that marine sediments generally exhibit a permeability that decreases with depth because of consolidation under gravity. Hence, the question is whether conventional theories based on a constant permeability lead to a conservative prediction of soil conditions or not. Our conclusion is affirmative only regarding piping condition. As for soil resistance, a prediction based on the assumption of a constant permeability is non-conservative. This is due to an overestimated reduction in effective stresses under suction-induced seepage.  相似文献   

15.
An investigation was conducted to obtain analytical solutions for the pullout behavior of a suction caisson undergoing inclined loads in sand. The inclined load is transformed into an equivalent load system in which the vertical, horizontal, and moment loads are applied on the center of the lid of the suction caisson. The vertical and lateral stiffness coefficients along the skirt of the suction caisson in sands are presented using the new three-dimensional elastic solutions taking into account the nonhomogeneous and nonlinear properties of the sand. The vertical, lateral, and rocking stiffness coefficients on the base of the suction caisson are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of a soil. The yield, pullout, and failure for sands with the nonhomogeneous and nonlinear characteristics are taken into consideration. The effects of the load inclination, the loading depth, and the aspect ratio on the pullout load capacity of the suction caisson are presented. Behaviour of the suction caisson in sand prior to failure is clarified from the relationship between tensile load, displacement, and rotation and that between depth, vertical pressure, and lateral pressure.  相似文献   

16.
吸力式导管架基础具备高承载力、高施工效率、高环境友好度、低造价等特点,使用其作为海上风电底部支撑结构有利于产业的规模化发展,实现上述愿景的前提在于使筒型基础顺利安装以满足设计要求。基于此,在不同初始施加泵压下,对吸力式导管架的沉贯效率特征值、基础内外围渗流变化、筒裙端部土压力特点进行探究。通过抱桩器使吸力式导管架在吸力安装过程中仅具备竖向自由度,从而进行纯沉贯试验。结果表明:初始泵压2 kPa时沉贯效率特征值最高;沉贯过程中基础外围渗流水压小于基础内围渗流水压;筒裙外侧所受土压要大于筒壁内侧所受土压力。  相似文献   

17.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

18.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2019,33(6):685-693
Suction caisson foundation derives most of their uplift resistance from passive suction developed during the pullout movement. It was observed that the passive suction generated in soil at the bottom of the caisson and the failure mode of suction caisson foundation subjecting pullout loading behaves as a reverse compression failure mechanism.The upper bound theorems have been proved to be a powerful method to find the critical failure mechanism and critical load associated with foundations, buried caissons and other geotechnical structures. However, limited attempts have been reported to estimate the uplift bearing capacity of the suction caisson foundation using the upper bound solution. In this paper, both reverse failure mechanisms from Prandtl and Hill were adopted as the failure mechanisms for the computation of the uplift bearing capacity of the suction caisson. New equations were proposed based on both failure mechanisms to estimate the pullout capacity of the suction caisson. The proposed equations were verified by the test results and experimental data from published literature. And the two solutions agree reasonably well with the other test results. It can be proved that both failure mechanisms are reasonably and more consistent with the actual force condition.  相似文献   

19.
Three centrifuge model tests were performed in normally consolidated Speswhite Kaolin to study the penetration of suction anchors in soft clay. The suction anchors could be penetrated by means of underpressure to a depth of about 12.4 to a little more than 14.5 times the diameter. When the anchors were penetrated by underpressure, all clay displaced by the skirt moved into the anchor. At a penetration depth of about half the maximum penetration depth, the volume of the soil heave inside the anchor actually increased more than the volume of the displaced clay. When a material coefficient of 1.5 against plug failure was mobilized, more than the clay displaced by the skirts had accumulated inside the anchor. The penetration resistance increased by 42 and 26% during rest periods of 4.5 and 0.8 days prototype time, respectively. Some uncertainty in the shear strength of the clay beds gave some uncertainty with respect to the interpretation, but the observed behaviour generally confirmed the theoretical analyses.  相似文献   

20.
The bearing behavior of suction caissons supporting offshore wind turbines under two-way cyclic lateral loading and dead load in clay was investigated with consideration of soil strength degradation and adhesive interface friction between caisson walls and heterogeneous clay using the finite-element package ABAQUS.An ABAQUS built-in user subroutine was programmed to calculate the adhesive interface friction between clay and caisson walls.The results of parametric studies showed that the degradation of bearing capacity could be aggravated by the decrease of the aspect ratio.The offset between the rotation point of the soil inside the caisson and the central axis of the caisson increased with the increasing vertical load and number of cycles.The linearly increasing strength profile and adhesive interface led to the formation of an inverted spoon failure zone inside the caisson.The settlement-rotation curves in each cycle moved downwards with increasing number of cycles due to the soil strength degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号