首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   

2.
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu–Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (∼400–550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (∼550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid–melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.  相似文献   

3.
Constraints on gold and copper ore grades in porphyry-style Cu–Au ± Mo deposits are re-examined, with particular emphasis on published fluid pressure and formation depth as indicated by fluid inclusion data and geological reconstruction. Defining an arbitrary subdivision at a molar Cu/Au ratio of 4.0 × 104, copper–gold deposits have a shallower average depth of formation (2.1 km) compared with the average depth of copper–molybdenum deposits (3.7 km), based on assumed lithostatic fluid pressure from microthermometry. The correlation of Cu/Au ratio with depth is primarily influenced by the variations of total Au grade. Despite local mineralogical controls within some ore deposits, the overall Cu/Au ratio of the deposits does not show a significant correlation with the predominant type of Cu–Fe sulfide, i.e., chalcopyrite or bornite. Primary magma source probably contributes to metal endowment on the province scale and in some individual deposits, but does not explain the broad correlation of metal ratios with the pressure of ore formation. By comparison with published experimental and fluid analytical data, the observed correlation of the Cu/Au ratio with fluid pressure can be explained by dominant transport of Cu and Au in a buoyant S-rich vapor, coexisting with minor brine in two-phase magmatic hydrothermal systems. At relatively shallow depth (approximately <3 km), the solubility of both metals decreases rapidly with decreasing density of the ascending vapor plume, forcing both Cu and Au to be coprecipitated. In contrast, magmatic vapor cooling at deeper levels (approximately >3 km) and greater confining pressure is likely to precipitate copper ± molybdenum only, while sulfur-complexed gold remains dissolved in the relatively dense vapor. Upon cooling, this vapor may ultimately contract to a low-salinity epithermal liquid, which can contribute to the formation of epithermal gold deposits several kilometers above the Au-poor porphyry Cu–(Mo) deposit. These findings and interpretations imply that petrographic inspection of fluid inclusion density may be used as an exploration indicator. Low-pressure brine + vapor systems are favorable for coprecipitation of both metals, leading to Au-rich porphyry–copper–gold deposits. Epithermal gold deposits may be associated with such shallow systems, but are likely to derive their ore-forming components from a deeper source, which may include a deeply hidden porphyry–copper ± molybdenum deposit. Exposed high-pressure brine + vapor systems, or stockwork veins containing a single type of intermediate-density inclusions, are more likely to be prospective for porphyry–copper ± molybdenum deposits.  相似文献   

4.
云南哈播斑岩铜(-钼-金)矿床流体包裹体研究   总被引:3,自引:3,他引:0  
哈播斑岩Cu-(Mo-Au)矿床产于哀牢山富碱斑岩带的南段,形成于青藏高原后碰撞阶段构造转换环境,属于陆-陆碰撞型斑岩矿床.根据脉体的交切关系,确定哈播矿床各种脉的演化序列为早期石英脉→石英-黄铜矿脉→石英辉钼矿脉.脉中流体包裹体的岩相学、显微测温和激光拉曼光谱分析等研究结果显示,各期脉中均有富气相包裹体、富液相包裹体和含子矿物多相包裹体,各种包裹体的气相均含有CO2、SO2、H2O等气体.各期脉中多种包裹体并存并具有相似的均一温度范围,富液相包裹体均一温度149~427℃,盐度ω(NaCleq)6.0%~15.0%;富气相包裹体均一温度205~405℃,盐度ω(NaCleq) 3.4%~19.0%;含子矿物多相包裹体均一温度305~516℃,盐度w(NaCleq) 33.5%~61.0%.哈播矿床的初始成矿流体由稳定共存、不混溶的低盐度流体和高盐度流体组成,高盐度流体是哈播矿床成矿元素迁移的主要载体.成矿流体在400℃左右发生“二次沸腾”、分相,温度下降和挥发分持续逃逸可能是Cu-Au成矿的诱因.Mo元素在成矿流体多次沸腾、分相过程中,持续优先分配进入高盐度流体中而逐步富集;温度下降,使含钼硫化物在流体中溶解度降低、沉淀,形成石英-辉钼矿±黄铜矿脉.  相似文献   

5.
The Bugdaya Au-bearing W-Mo porphyry deposit, Eastern Transbaikal Region, Russia, is located in the central part of volcanic dome and hosted in the large Variscan granitic pluton. In its characteristics, this is a Climax-type deposit, or an Mo porphyry deposit of rhyolitic subclass. The enrichment in gold is related to the relatively widespread vein and veinlet gold-base-metal mineralization. More than 70 minerals (native metals, sulfides, sulfosalts, tellurides, oxides, molybdates, wolframates, carbonates, and sulfates) have been identified in stockwork and vein ores, including dzhalindite, greenockite, Mo-bearing stolzite, Ag and Au amalgams, stromeyerite, cervelleite, and berryite identified here for the first time. Four stages of mineral formation are recognized. The earliest preore stage in form of potassic alteration and intense silicification developed after emplacement of subvolcanic rhyolite (granite) porphyry stock. The stockwork and vein W-Mo mineralization of the quartz-molybdenite stage was the next. Sericite alteration, pyritization, and the subsequent quartz-sulfide veins and veinlets with native gold, base-metal sulfides, and various Ag-Cu-Pb-Bi-Sb sulfosalts of the gold-base-metal stage were formed after the rearrangement of regional pattern of tectonic deformation. The hydrothermal process was completed by argillic (kaolinite-smectite) assemblage of the postore stage. The fluid inclusion study (microthermometry and Raman spectroscopy) allowed us to establish that the stockwork W-Mo mineralization was formed at 550–380°C from both the highly concentrated Mg-Na chloride solution (brine) and the low-density gas with significant N2 and H2S contents. The Pb-Zn vein ore of the gold-base-metal stage enriched in Au, Ag, Bi, and other rare metals was deposited at 360–140°C from a homogeneous Na-K chloride (hydrocarbonate, sulfate) hydrothermal solution of medium salinity.  相似文献   

6.
F. G. Reyf   《Chemical Geology》2004,210(1-4):49-71
Melt and fluid inclusions in minerals from the peralkaline granite intrusion and associated mineralized country rocks from the Yermakovka F–Be deposit were studied to characterize the behaviour of trace elements and exsolved fluids in the transition from magmatic to hydrothermal processes. Ore mineralization was mostly due to volatile release from a deep-seated pluton for which crystallization history and fluid exsolution can be tracked by three batches of magma (Gr1→Gr3) intruded at the level of the ore deposition to form the Yermakovka stock. Each batch of the sequential granite group is found to intrude at decreasing temperature (from 840 to 730 °C) and progressively increasing extent of crystallization of magma in the parental pluton. This resulted in the enrichment of the ascending melts in H2O (3.9 to 6.1 wt.%), F (2.6 to 4.1 wt.%) and some incompatible elements (Zr, Nb, Th, Rb, Pb). Although the earliest evidence for the exsolution of homogeneous fluoride–sulphate brine correlates with the final stage of the Gr2 ascent, the most intensive volatile(s) release from the emplaced magmas is shown to occur during their in situ crystallization, which was associated with the separation of exsolved fluid into immiscible phases, brine and low-salinity solution. Compositions of these fluid phases are determined using atomic emission spectroscopy of the appropriate fluid inclusions opened by a laser microprobe and EMPA and SEM–EDS analyses of daughter crystals. The brine phase is enriched in Mo, Mn, Be (up to 17, 8, and 0.3 g/kg, respectively) and contains perceptible abundances of Ce, La, Pb, Zn, whereas the low-salinity phase is enriched only in Be (up to 0.6 g/kg). The selective mobilization of the metals from the melt into fluids is considered to result from the oxidized state of the melt and fluids, peralkalinity of the melt during crystallization, and high F content of the melt. The immiscible fluid phases are shown to migrate together through the solidifying stock giving rise to the albitized granite that is enriched in molybdenite but devoid of Be minerals. In the country rocks, solutions similar to the brine and low-salinity phases of the magmatic fluid made up separate fluid flows, which produced Be and Mo mineralization and were issued predominantly from the parental pluton. Both types of mineralization are nearly monometallic which suggests that of the metals, jointly transported by the brine, only Mo and, in part, Ce and La precipitated separately at the level where the low-salinity solutions deposited Be ores.  相似文献   

7.
The Jiguanshan porphyry Mo deposit is located in the southern part of Xilamulun metallogenic belt at the northern margin of the North China Craton (NCC). In the Jiguanshan mining district, two stages of granitoids intrusions have been recognized: a pre-ore granite porphyry with stockworks and veins of Mo mineralization, and a granite porphyry with disseminated Mo mineralization. Zircon U–Pb data and Hf isotope analyses show that the dissemination-mineralized granite porphyry yielded a weighted mean 206Pb/238U age of 156.0 ± 1.3 Ma, with a crustal εHf(t) values from − 5.6 to + 0.2, and that the main group of magmatic zircons from the pre-ore granite porphyry have a weighted mean 206Pb/238U age of 167.7 ± 1.7 Ma with εHf(t) values from − 3.2 to + 1.0. Combined with groundmass Ar–Ar age data of the granite porphyry and molybdenite Re–Os age, it is suggested that the Mo mineralization of Jiguanshan deposit was formed in the late Jurassic (153 ~ 155 Ma) during tectonic and magmatic events that affected northeast China. The Mo mineralization was a little bit later than the host granite porphyry. Besides disseminated in the host granite porphyry, Mo mineralization also presents in middle Jurassic pre-ore granite porphyry, Jurassic fine-grained diabase, Triassic quartz porphyry, and in rhyolitic volcanic rocks as well as syenite of Devonian age.The Jiguanshan mining district was affected by the tectonic events associated with the Paleo-Asian Ocean closure, and later by far-field tectonism, related to subduction of the Paleo-Pacific plate (Izanagi) in the Jurassic-Cretaceous. The tectonic and thermal events linked with the latter are commonly referred to as Yanshanian tectono-thermal event, and consists of a series of geodynamic, magmatic and ore-forming processes, which in the mining district area included the intrusion of the pre-ore granite porphyry, the host granite porphyry, Mo mineralization, and fine-grained diabase. Major and trace element analyses show that the host granite porphyry is characterized by high silica abundances (SiO2 = 77.16 to 77.51%), high Rb/Sr ratios (13.57 to 14.83), high oxidation (Fe2O3/FeO = 34.25 to 62.00) and high alkalies (Na2O + K2O = 8.21 to 8.38%). Petrographic and microthermometry studies of the fluid inclusions from Mo mineralized veins, characterized by plenty of daughter mineral-bearing inclusions, showed that the predominant homogenization temperatures range from 250 to 440 °C. Combined with Laser Raman analysis of the fluid inclusions, it is indicated that Mo mineralization is related to a high-temperature, hypersaline and high-oxygen fugacity H2O–NaCl fluid system, with high F contents.Based on geology, geochronology, isotope systematics, geochemistry and fluid inclusion studies as well as regional geology, we propose, for the first time, a genetic model for the Jiguanshan porphyry Mo deposit. During the Jurassic geodynamic evolution of northeast China, high silicic, high oxidized and alkaline-rich granitic magma probably derived from partial melting of the lower crust, episodically intruded along faults into the country rocks. This fluid system, fractionating from the highly differentiated granitic magma and bearing Mo with minor Cu metals, migrated upwards and interacted with the older wall rocks and associated fractures, in which the ore minerals precipitated, resulting in the development of what we refer to as the “Jiguanshan-type” porphyry Mo deposit.  相似文献   

8.
The Jiadanggen porphyry Cu–(Mo) deposit is newly discovered and located in the Eastern Kunlun metallogenic belt of Qinghai Province, China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of the mineralization causative granodiorite porphyry. The new data indicate that the granodiorite porphyry is characterized by high SiO2 (68.21–70.41 wt.%) and Al2O3, relatively high K2O, low Na2O, and low MgO and CaO concentrations, and is high-K calc-alkaline and peraluminous. The granodiorite porphyry has low Mg# (38–46) values that are indicative of no interaction between the magmas and the mantle. The samples that we have examined have low Nb/Ta (9.17–10.3) and Rb/Sr (0.28–0.39) ratios, which are indicative of crustal-derived magmas. Source region discrimination diagrams indicate that the magmas that formed the granodiorite porphyry were derived from melting of a mixed amphibolite source in the lower crust. The samples have ISr values of 0.70954–0.70979, εNd(t) values of − 8.3 to − 7.9, and t2DM ages ranging from 1644 to 1677 Ma. These indicate that the magmas that formed this intrusion were generated by melting of Mesoproterozoic lower crustal material. Higher K(Rb) contents of the samples indicate that the magma source is high potassium basaltic material in the lower crust, which could be derived from an enriched mantle source. LA-ICP-MS zircon U–Pb dating of the granodiorite porphyry yields a late Indosinian age (concordia age of 227 ± 1 Ma; MSWD = 0.31), which is close to the molybdenite Re–Os isochron age (227.2 ± 1.9 Ma), indicating further the close relationship between the granodiorite porphyry and the Cu–(Mo) mineralization. These samples are LREE and LILE (e.g., Rb, K, Ba, and Sr) enriched, and HFSE (e.g., Nb, Ta, P, and Ti) depleted, especially in P and Ti, similar to the characteristics of volcanic arc magmas. This intrusion most likely formed during the later stage of Indosinian deep subduction of oceanic slab. This was associated with underplating of mantle-derived magmas, which provided heat for crustal melting. Similar to the Jiadanggen granodiorite porphyry, Indosinian hypabyssal intermediate-felsic intrusive rocks, formed under subduction tectonism or a transitional regime from subduction to syn-collision, make up the most important targets for porphyry Cu(Mo) deposits in the Eastern Kunlun metallogenic belt.  相似文献   

9.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

10.

The Naozhi Au–Cu deposit is located on the continental margin of Northeast China, forming part of the West Pacific porphyry–epithermal gold–copper metallogenic belt. In this paper, we systematically analyzed the compositions, homogenization temperatures, and salinity of fluid inclusions as well as their noble gas isotopic and Pb isotopic compositions from the deposit. These new data show that (1) five types of fluid inclusions were identified as pure gas inclusions (V-type), pure liquid inclusions (L-type), gas–liquid two-phase inclusions (W-type, as the main fluid inclusions (FIs)), CO2-bearing inclusions (C-type), and daughter-mineral-bearing polyphase inclusions (S-type); (2) W-type FIs in quartz crystals of early, main, and late stage are homogenized at temperatures of 324.7–406.7, 230–338.8, and 154.6–308 °C, with salinities of 2.40–7.01 wt% NaCleq, 1.73–9.47 wt% NaCleq, and 6.29 wt% NaCleq, respectively. S-type FIs in quartz crystals of early stage are homogenized at temperatures of 328.6–400 °C, with salinities of 39.96–46.00 wt% NaCleq; (3) Raman analysis results reveal that the vapor compositions of early ore-forming fluids consisted of CO2 and H2O, with H2O gradually increasing and CO2 being absent at the late mineralization stage; (4) fluid inclusions in pyrite and chalcopyrite have 3He/4He ratios of 0.03–0.104 Ra, 20Ne/22Ne ratios of 9.817–9.960, and 40Ar/36Ar ratios of 324–349. These results indicate that the percentage of radiogenic 40Ar* in fluid inclusions varies from 8.8 to 15.5 %, containing 84.5–91.2 % atmospheric 40Ar; (5) the 206Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of sulfides are 18.1822–18.3979, 15.5215–15.5998, and 38.1313–38.3786, respectively. These data combined with stable isotope data and the chronology of diagenesis and metallogenesis enable us suppose that the ore-forming fluids originated from the melting of the lower crust, caused by the subduction of an oceanic slab, whereas the mineralized fluids were exsolved from the late crystallization stage and subsequently contaminated by crustal materials/fluids during ascent, including meteoric water, and the mineral precipitation occurred at a shallow crustal level.

  相似文献   

11.
Major Cu–Au deposits of iron oxide–copper–gold (IOCG) style are temporally associated with oxidized, potassic granitoids similar to those linked to major porphyry Cu–Au deposits. Stable and radiogenic isotope evidence indicates fluids and ore components were likely sourced from the intrusions. IOCG deposits form over a range of crustal levels because CO2-rich fluids separate from the magmas at higher pressures than in CO2-poor systems, thereby, promoting partitioning of H2O, Cl and metals to the fluid phase. At deep levels, the magma–fluid system cannot generate sufficient mechanical energy to fracture the host rocks as in porphyry systems and the IOCG deposits therefore form in a variety of fault-related structural traps where the magmatic fluids may mix with other fluids to promote ore formation. At shallow levels, the IOCG deposits form breccia and fracture-hosted mineralization styles similar to the hydrothermal intrusive breccias and sulphide vein systems that characterize many porphyry Cu–Au deposits. The fluids associated with IOCG deposits are typically H2O–CO2–salt fluids that evolve by unmixing of the carbonic phase and by mixing with fluids from other sources. In contrast, fluids in porphyry systems typically evolve by boiling of moderate salinity fluid to produce high salinity brine and a vapor phase commonly with input of externally derived fluids. These different fluid compositions and mechanisms of evolution lead to different alteration types and parageneses in porphyry and IOCG deposits. Porphyry Cu–Au deposits typically evolve through potassic, sericitic and (intermediate and/or advanced) argillic stages, while IOCG deposits typically evolve through sodic(–calcic), potassic and carbonate-rich stages, and at deeper levels, generally lack sericitic and argillic alteration. The common association of porphyry and IOCG Cu–Au deposits with potassic, oxidized intermediate to felsic granitoids, together with their contrasting fluid compositions, alteration styles and parageneses suggest that they should be considered as part of the broad family of intrusion-related systems but that they are typically not directly related to each other.  相似文献   

12.
Detailed melt and fluid inclusion studies in quartz hosts from the Variscan Ehrenfriedersdorf complex revealed that ongoing fractional crystallization of the highly evolved H2O-, B-, and F-rich granite magma produced a pegmatite melt, which started to separate into two immiscible phases at about 720°C, 100 MPa. With cooling and further chemical evolution, the immiscibilty field expanded. Two conjugate melts, a peraluminous one and a peralkaline one, coexisted down to temperatures of about 490°C. Additionally, high-salinity brine exsolved throughout the pegmatitic stage, along with low-density vapor. Towards lower temperatures, a hydrothermal system gradually developed. Boiling processes occurred between 450 and 400°C, increasing the salinities of hydrothermal fluids at this stage. Below, the late hydrothermal stage is dominated by low-salinity fluids. Using a combination of synchrotron radiation-induced X-ray fluorescence analysis and Raman spectroscopy, the concentration of trace elements (Mn, Fe, Zn, As, Sb, Rb, Cs, Sr, Zr, Nb, Ta, Ag, Sn, Ta, W, rare earth elements (REE), and Cu) was determined in 52 melt and 8 fluid inclusions that are representative of distinct stages from 720°C down to 380°C. Homogenization temperatures and water contents of both melt and fluid inclusions are used to estimate trapping temperatures, thus revealing the evolutionary stage during the process. Trace elements are partitioned in different proportions between the two pegmatite melts, high-salinity brines and exsolving vapors. Concentrations are strongly shifted by co ncomitant crystallization and precipitation of ore-forming minerals. For example, pegmatite melts at the initial stage (700°C) have about 1,600 ppm of Sn. Concentrations in both melts decrease towards lower temperatures due to the crystallization of cassiterite between 650 and 550°C. Tin is preferentially fractionated into the peralkaline melt by a factor of 2–3. While the last pegmatite melts are low in Sn (64 ppm at 500°C), early hydrothermal fluids become again enriched with about 800 ppm of Sn at the boiling stage. A sudden drop in late hydrothermal fluids (23 ppm of Sn at 370°C) results from precipitation of another cassiterite generation between 400 and 370°C. Zinc concentrations in peraluminous melts are low (some tens of parts per million) and are not correlated with temperature. In coexisting peralkaline melts and high-T brines, they are higher by a factor of 2–3. Zinc continuously increases in hydrothermal fluids (3,000 ppm at 400°C), where the precipitation of sphalerite starts. The main removal of Zn from the fluid system occurs at lower temperatures. Similarly, melt and fluid inclusion concentrations of many other trace elements directly reflect the crystallization and precipitation history of minerals at distinctive temperatures or temperature windows.  相似文献   

13.
The Baiyanghe Be–U–Mo deposit is located in the Late Paleozoic Xuemisitan–Kulankazi island arc of the northwestern margin of the Junggar plate, Northwest China. It is the largest Be deposit (2.2 M tons of ore with grades ranging from 0.2% to 1.4%) in Asia. Orebodies in the deposit occur as fractures along contact zones between the Yangzhuang granite porphyry intrusion and Devonian pyroclastic country rocks and within the porphyry itself. Muscovite–fluorite veins are closely associated with the Be–U–Mo mineralization. A new Ar–Ar dating of the muscovite in this study yields a plateau age of 303.0 ± 1.6 Ma, which constrains the timing of the Be–U–Mo mineralization of the deposit. Three stages of fluorite of different colors have been identified at the deposit, with the earliest dark-purple fluorite more closely associated with the mineralization. Microthermometry of fluid inclusions obtained from the three stages of fluorite suggests that the fluorites were precipitated as veins from low temperature (120–150 °C) hydrothermal fluids with salinity ranging from 4.7 to 19.7 wt.% NaCl eqv. Based on the trace elemental concentrations and REE patterns of the fluorite, the style of veining, and the low salinity and low temperature characters of the fluid inclusions, it is suggested that Be and U were most likely transported as fluoride complexes and Mo as hydroxyl complexes. Pb isotopic compositions of the ores and country rocks, as well as O and H isotopic characters of the ore-related muscovite, indicate mixing between magmatic and meteoric waters; both contributed to formation of the ore-forming fluids. Metallic Be, U, and Mo were most likely leached out from the granite porphyry by the fluids. The fluid mixing led to the reduction of U, Mo, and Be and their precipitation at the deposit.  相似文献   

14.
《Resource Geology》2018,68(1):1-21
The Daheishan Mo deposit of the Lesser Xing'an–Zhangguangcai Range metallogenic belt in northeast China is a super‐large molybdenum deposit with Mo reserves of 1.09 Mt. The Mo mineralization occurs mainly in a granodiorite porphyry. Zircon SIMS U–Pb dating yields a crystallization age of 168.3 ± 1.4 Ma for the granodiorite porphyry. Molybdenite Re–Os dating indicates that Mo mineralization occurred at 169.2 ± 1.2 Ma. These geochronological data indicate that these magmatic and hydrothermal activities occurred during the Middle Jurassic. The granodiorite porphyry can be classified as high‐K calc‐alkaline series, and the rare earth elements (REE) are characterized by a significant fractionation between light REE (LREE) and heavy REE (HREE) with slightly positive Eu anomalies (Eu/Eu* = 1.08–1.12). Large ion lithophile elements (e.g., Rb, U, K, and Pb) are enriched, whereas high field strength elements (e.g., Nb, Ta, Ti, HREEs, and Yb) are strongly depleted. The granodiorite porphyry is also characterized by initial strontium isotope ratios (87Sr/86Sr)i of 0.70460–0.70482 and magmatic zircon δ18O values of 5.2–6.5 ‰ that are similar to those of the mantle. Zircon ɛHf(t) and whole‐rock ε Nd(t) values range from 5.6 to 9.9 and 0.8 to 1.1, respectively. The two‐stage Nd model ages (TDM2) are in the range of 868–894 Ma, similar to Hf model ages, indicating that the parent magma has a uniform source and primarily originated from a juvenile crustal source. Combined with the regional geological history, geochemistry of the Daheishan granodiorite porphyry, and new isotopic age data, we propose that the formation of the Daheishan porphyry Mo deposit is likely related to the subduction of the Paleo‐Pacific Plate.  相似文献   

15.
The data obtained on melt and fluid inclusions in minerals of granites, metasomatic rocks, and veins with tin ore mineralization at the Industrial’noe deposit in the southern part of the Omsukchan trough, northeastern Russia, indicate that the melt from which the quartz of the granites crystallized contained globules of salt melts. Silicate melt inclusions were used to determine the principal parameters of the magmatic melts that formed the granites, which had temperatures at 760–1020°C, were under pressures of 0.3–3.6 kbar, and had densities of 2.11–2.60 g/cm3 and water concentrations of 1.7–7.0 wt %. The results obtained on the fluid inclusions testify that the parameters of the mineral-forming fluids broadly varied and corresponded to temperatures at 920–275°C, pressures 0.1–3.1 kbar, densities of 0.70–1.90 g/cm3, and salinities of 4.0–75.0 wt % equiv. NaCl. Electron microprobe analyses of the glasses of twelve homogenized inclusions show concentrations of major components typical of an acid magmatic melt (wt %, average): 73.2% SiO2, 15.3% Al2O3, 1.3% FeO, 0.6% CaO, 3.1% Na2O, and 4.5% K2O at elevated concentrations of Cl (up to 0.51 wt %, average 0.31 wt %). The concentrations and distribution of some elements (Cl, K, Ca, Mn, Fe, Cu, Zn, Pb, As, Br, Rb, Sr, and Sn) in polyphase salt globules in quartz from both the granites and a mineralized miarolitic cavity in granite were assayed by micro-PIXE (proton-induced X-ray emission). Analyses of eight salt globules in quartz from the granites point to high concentrations (average, wt %) of Cl (27.5), Fe (9.7), Cu (7.2), Mn (1.1), Zn (0.66), Pb (0.37) and (average, ppm) As (2020), Rb (1850), Sr (1090), and Br (990). The salt globules in the miarolitic quartz are rich in (average of 29 globules, wt %) Cl (25.0), Fe (5.4), Mn (1.0), Zn (0.50), Pb (0.24) and (ppm) Rb (810), Sn (540), and Br (470). The synthesis of all data obtained on melt and fluid inclusions in minerals from the Industrial’noe deposit suggest that the genesis of the tin ore mineralization was related to the crystallization of acid magmatic melts. Original Russian Text@ V.B. Naumov, V.S. Kamenetsky, 2006, published in Geokhimiya, 2006, No. 12, pp. 1279–1289.  相似文献   

16.
The Toodoggone district comprises Upper Triassic to Lower Jurassic Hazelton Group Toodoggone Formation volcanic and sedimentary rocks, which unconformably overlie submarine island-arc volcanic and sedimentary rocks of the Lower Permian Asitka Group and Middle Triassic Takla Group, some of which are intruded by Upper Triassic to Lower Jurassic plutons and dikes of the Black Lake suite. Although plutonism occurred episodically from ca. 218 to 191 Ma, the largest porphyry Cu–Au ± Mo systems formed from ca. 202 to 197 Ma, with minor mineralization occurring from ca. 197 to 194 Ma. Porphyry-style mineralization is hosted by small-volume (<1 km3), single-phase, porphyritic igneous stocks or dikes that have high-K calc-alkaline compositions and are comparable with volcanic-arc granites. The Fin porphyry Cu–Au–Mo deposit is anomalous in that it is 16 m.y. older than any other porphyry Cu–Au ± Mo occurrence in the district and has lower REEs. All porphyry systems are spatially restricted to exposed Asitka and Takla Group basement rocks, and rarely, the lowest member of the Hazelton Group (i.e., the ca. 201 Ma Duncan Member). The basement rocks to intrusions are best exposed in the southern half of the district, where high rates of erosion and uplift have resulted in their preferential exposure. In contrast, low- and high-sulfidation epithermal systems are more numerous in the northern half of the district, where the overlying Hazelton Group rocks dominate exposures. Cogenetic porphyry systems might also exist in the northern areas; however, if they are present, they are likely to be buried deeply beneath Hazelton Group rocks. High-sulfidation epithermal systems formed at ca. 201 to 182 Ma, whereas low-sulfidation systems were active at ca. 192 to 162 Ma. Amongst the studied epithermal systems, the Baker low-sulfidation epithermal deposit displays the strongest demonstrable genetic link with magmatic fluids; fluid inclusion studies demonstrate that its ore fluids were hot (>468°C), saline, and deposited metals at deep crustal depths (>2 km). Sulfur, C, O, and Pb isotope data confirm the involvement of a magmatic fluid, but also suggest that the ore fluid interacted with Asitka and Takla Group country rocks prior to metal deposition. In contrast, in the Shasta, Lawyers, and Griz-Sickle low-sulfidation epithermal systems, there is no clear association with magmatic fluids. Instead, their fluid inclusion data indicate the involvement of low-temperature (175 to 335°C), low-salinity (1 to 11 equiv. wt.% NaCl) fluids that deposited metals at shallow depths (<850 m). Their isotope (i.e., O, H, Pb) data suggest interaction between meteoric and/or metamorphic ore fluids with basement country rocks.  相似文献   

17.
Deposition of quartz–molybdenite–pyrite–topaz–muscovite–fluorite and subsequent hübnerite and sulfide–fluorite–rhodochrosite mineralization at the Sweet Home Mine occurred coeval with the final stage of magmatic activity and ore formation at the nearby world-class Climax molybdenum deposit about 26 to 25 m.y. ago. The mineralization occurred at depths of about 3,000 m and is related to at least two major fluid systems: (1) one dominated by magmatic fluids, and (2) another dominated by meteoric water. The sulfur isotopic composition of pyrite, strontium isotopes and REY distribution in fluorite suggest that the early-stage quartz–molybdenite–pyrite–topaz–muscovite–fluorite mineral assemblage was deposited from magmatic fluids under a fluctuating pressure regime at temperatures of about 400°C as indicated by CO2-bearing, moderately saline (7.5–12.5 wt.% NaCl equiv.) fluid inclusions. LA-ICPMS analyses of fluid inclusions in quartz demonstrate that fluids from the Sweet Home Mine are enriched in incompatible elements but have considerably lower metal contents than those reported from porphyry–Cu–Au–Mo or Climax-type deposits. The ore-forming fluid exsolved from a highly differentiated magma possibly related to the deep-seated Alma Batholith or distal porphyry stock(s). Sulfide mineralization, marking the periphery of Climax-type porphyry systems, with fluorite and rhodochrosite as gangue minerals was deposited under a hydrostatic pressure regime from low-salinity ± CO2-bearing fluids with low metal content at temperatures below 400°C. The sulfide mineralization is characterized by mostly negative δ34S values for sphalerite, galena, chalcopyrite, and tetrahedrite, highly variable δ18O values for rhodochrosite, and low REE contents in fluorite. The Pb isotopic composition of galena as well as the highly variable 87Sr/86Sr ratios of fluorite, rhodochrosite, and apatite indicates that at least part of the Pb and Sr originated from a much more radiogenic source than Climax-type granites. It is suggested that the sulfide mineralization at the Sweet Home Mine formed from magmatic fluids that mixed with variable amounts of externally derived fluids. The migration of the latter fluids, that were major components during late-stage mineralization at the Sweet Home Mine, was probably driven by a buried magmatic intrusion.  相似文献   

18.
The Yuchiling Mo deposit, East Qinling, China, belongs to a typical porphyry Mo system associated with high-K calc-alkaline intrusions. The pure CO2 (PC), CO2-bearing (C), aqueous H2O-NaCl (W), and daughter mineral-bearing (S) fluid inclusions were observed in the hydrothermal quartz. Based on field investigations, petrographic, microthermometric and LA-ICP-MS studies of fluid inclusions, we develop a five-stage fluid evolution model to understand the ore-forming processes of the Yuchiling deposit. The earliest barren quartz ± potassic feldspar veins, developed in intensively potassic alteration, were crystallized from carbonic-dominant fluids at high temperature (> 416 °C) and high pressure (> 133 MPa). Following the barren quartz ± potassic feldspar veins are quartz-pyrite veins occasionally containing minor K-feldspar and molybdenite, which were formed by immiscible fluids at pressures of 47–159 MPa and temperatures of 360–400 °C. The fluids were characterized by high CO2 contents (approximately 8 mol%) and variable salinities, as well as the highest Mo contents that resulted in the development of quartz-molybdenite veins. The quartz-molybdenite veins, accounting for > 90% Mo in the orebody, were also formed by immiscible fluids with lower salinity and lower CO2 content of 7 mol%, at temperatures of 340–380 °C and pressures of 39–137 MPa, as constrained by fluid inclusion assemblages. After the main Mo-mineralization, the uneconomic Cu-Pb-Zn mineralization occurred, as represented by quartz-polymetallic sulfides veins consisting of pyrite, molybdenite, chalcopyrite, digenite, galena, sphalerite and quartz. The quartz-polymetallic sulfide veins were formed by fluids containing 5 mol% CO2, with minimum pressures of 32–110 MPa and temperatures of 260–300 °C. Finally, the fluids became dilute (5 wt.% NaCl equiv) and CO2-poor, which caused the formation of late barren quartz ± carbonate ± fluorite veins at 140–180 °C and 18–82 MPa.It is clear that the fluids became more dilute, CO2-poor, and less fertile, with decreasing temperature and pressure from quartz-pyrite to late barren veins. Molybdenite and other sulfides can only be observed in the middle three stages, i.e., quartz-pyrite, quartz-molybdenite and quartz-polymetallic sulfide veins. These three kinds of veins are generally hosted in potassic altered rocks with remarkable K-feldspathization, but always partly overprinted by phyllic alteration. The traditional porphyry-style potassic–phyllic–propylitic alteration zoning is not conspicuous at Yuchiling, which may be related to, and characteristic of, the CO2-rich fluids derived from the magmas generated in intercontinental collision orogens.Among the fluid inclusions at Yuchiling, only the C-type contains maximum detectable Mo that gradationally decreases from 73 ppm in quartz-pyrite veins, through 19 ppm in quartz-molybdenite veins, and to 13 ppm in quartz-polymetallic sulfide veins, coinciding well with the decreasing CO2 contents from 8 mol%, through 7 mol%, to 5 mol%, respectively. Hence it is suggested that decreasing CO2 possibly results in decreasing Mo concentration in the fluids, as well as the precipitation of molybdenite from the fluids. This direct relationship might be a common characteristic for other porphyry Mo systems in the world.The Yuchiling Mo deposit represents a new type Mo mineralization, with features of collision-related setting, high-K calc-alkaline intrusion, CO2-rich fluid, and unique wall-rock alterations characterized by strong K-feldspathization and fluoritization.  相似文献   

19.
High-resolution X-ray computed tomography (HRXCT) provides unique information of the geological and metallurgical significance for gold and related ore minerals in the supergiant Grasberg porphyry Cu–Au deposit. Digital radiographs have proved to be an effective means of screening samples for the presence of gold for HRXCT studies. Digital radiograph effectiveness is limited by the thickness of samples (typically to ≤2 cm), as well as the associated minerals. Thus, preselecting samples for gold studies using HRXCT is most effective using digital radiographs combined with assay information. Differentiating between metallic mineral grains with relatively small differences in density, e.g., bornite (5.1 g/cm3) from chalcopyrite (4.2 g/cm3), is relatively straightforward for isolated monominerallic grains or composites in a similar lower-density matrix, but difficulties are encountered with the interpretation of typical intergrown ore minerals. X-ray beam-hardening artifacts lead to inconsistency in attenuation determination, both within and among slice images, complicating quantitative processing. However, differentiation of chalcopyrite and bornite has been successful in smaller-diameter (≤22-mm) cores of Grasberg ores. Small-diameter (≤10 mm) cores of the Grasberg stockwork Cu–Au ore were analyzed using HRXCT methods scanned at the minimum spacing currently available (7.5 μm), and data reduction protocols using the Blob3D program were modified to improve the quantification of grain sizes and shapes. Grains as small as 6.5 μm have been identified. All of these grains are in direct contact with chalcopyrite, providing support for gold distribution in porphyry copper systems being a result of exsolution from copper sulfides. HRXCT scanning (±digital radiography) precisely defines the in situ location of mineral grains of interest within a sample, which then can be studied in conventional petrographic sections, and other types of analytical studies conducted, e.g., gold trace element geochemistry.  相似文献   

20.
The presence of large amounts of atacamite in oxide zones from ore deposits in the Atacama Desert of northern Chile requires saline solutions for its formation and hyperarid climate conditions for its preservation. We investigated the nature and origin of atacamite-forming solutions by means of coupling groundwater geochemical analyses with fluid inclusion data, high-resolution mineralogical observations, and chlorine-36 (36Cl) data in atacamite from the Mantos Blancos and Spence Cu deposits. In both deposits, the salinities of fluid inclusions in atacamite are comparable to those measured in saline groundwaters sampled from drill holes. The average salinity of fluid inclusions in atacamite for the Mantos Blancos and Spence deposits (~7–9 and 2–3 wt.% NaCleq, respectively) are strongly correlated to the salinities at which gypsum supersaturates from groundwaters in both deposits (total dissolved solids ~5–9 and 1–3 wt.% NaCleq, respectively). This correlation is confirmed by transmission electron microscopy observations of atacamite-bearing samples, revealing an intimate association between atacamite and gypsum that can be traced down to the nanometer scale. 36Cl data in atacamite provide new lines of evidence concerning the origin and age of the saline waters that formed atacamite in various stratabound and porphyry Cu deposits from the Atacama Desert. All atacamite samples show very low 36Cl-to-Cl ratios (11 × 10−15 to 28 × 10−15 at at−1), comparable to previously reported 36Cl-to-Cl ratios of deep formation waters and old groundwaters. In addition, 36Cl-to-Cl ratios in atacamite correlate with U and Th concentration in the host rocks but are independent from distance to the ocean. This trend supports an interpretation of the low 36Cl-to-Cl ratios in atacamite as representing subsurface production of fissiogenic 36Cl in secular equilibrium with the solutions involved in atacamite formation. Therefore, 36Cl in atacamite strongly suggest that the chlorine in saline waters related to atacamite formation is old (>1.5 Ma) but that atacamite formation occurred more recently (<1.5 Ma) than suggested in previous interpretations. Our data provide new constraints on the origin of atacamite in Cu deposits from the Atacama Desert and support the recent notion that the formation of atacamite in hyperarid climates such as the Atacama Desert is an ongoing process that has occurred intermittently since the onset of hyperaridity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号