首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 4 毫秒
1.
以忻州窑矿8939工作面为工程背景,运用弹性板理论分析坚硬顶板破断期间释放的弹性能量值,并利用FLAC3D数值模拟划分工作面回采期间的高应力区域,同时根据分形理论分析微震事件的时间分布、空间分布与冲击地压的内部关联。研究结果表明:坚硬顶板断裂前,悬露顶板由于旋转下沉不断对工作面前方煤体缓慢加载,由于过程缓慢,应力与能量不断向煤岩体深部转移,不易发生冲击地压。当顶板断裂时,会瞬间释放大量的弯曲应变能,对工作面周围煤体产生强大的脉冲作用,若脉冲能量超过冲击地压的临界值,则发生冲击地压的可能性较大。且冲击地压发生之前,煤岩体处于非稳定状态,会与外界积极交换能量,此时微震事件处于活跃期,当微震能量超过一定数值或微震事件的分维值低于某临界值时,易发生冲击地压。   相似文献   

2.
针对综放回采工作面老顶来压时易发生冒顶冲击地压事故,某矿1305综放工作面采用波兰矿山研究总院研制的新一代SOS高精度微震监测系统,对工作面自开切眼回采开始进行全程时时连续监测。统计分析微地震事件、事件发生频率及事件总能量的周期性变化,从而推断出老顶断裂的周期性。再经过理论计算验证系统的准确性。结果表明:工作面的周期来压与矿震事件能量的周期变化存在相对应的关系; 强烈微震活动发生前有一段弱震活动时期,为强震的发生积蓄了更多的能量; 周期来压时释放的总能量在某一特定水平波动,但波动的变化不稳定性增强。该结论对工作面安全回采及预防矿震冲击地压的发生具有一定的现实指导意义。  相似文献   

3.
不同岩性顶板回采工作面矿压分布规律   总被引:4,自引:0,他引:4  
采用数值模拟技术和现场矿压观测系统,研究了不同岩性顶板回采工作面矿压分布规律及其显现特征。结果表明,在煤炭开采过程中,不同岩性顶板回采工作面最大支承应力存在一定差异,在强度较高的砂岩顶板岩体中,支承压力大,工作面前方支承压力峰值距工作面距离小,初次来压步距和周期来压步距大,矿压显现强烈;而在强度较低的泥岩顶板区,顶板岩体不能和砂岩骨架层一样抵抗覆岩压力,且支承压力小,支承压力的峰值向回采工作面前方岩体内部推移,初次来压步距和周期来压步距小,矿压显现不明显。   相似文献   

4.
河北唐山矿冲击地压的发生除了受开采技术条件、煤层顶底板岩石学特征等因素影响外,主要受赋存环境的影响,其中地应力条件是一个重要的影响因素。以唐山矿构造应力分布规律为背景,对不同水平构造应力条件下回采工作面煤层及其顶底板围岩的三维场进行了数值分析,系统研究了构造应力对煤层及其顶底板围岩的冲击地压的影响。结果表明,在煤矿开采过程中,高水平构造应力对采区煤层及其顶底板围岩的应力场和能量场的分布规律具有重要影响。高构造应力条件下,煤层及其顶底板围岩中的高水平应力为冲击地压的发生提供了力源条件,而在高地应力环境下所积聚的大量弹性应变能为冲击地压的发生提供了能量条件。   相似文献   

5.
采动支承压力引起的能量积聚及其突发释放是导致应变型冲击地压发生的根源之一。在将工作面前方煤体划分为阻力区、驱动区和无明显影响区的基础上,把应变型冲击地压从孕育到发生全过程分为能量稳定积聚、能量平衡和能量非稳定释放3个阶段,并研究其发生的基本条件;建立了采动支承压力引起应变型冲击地压的能量判据,即认为力学平衡状态破坏时驱动区煤体释放的弹性应变能与阻力区煤体完全破坏消耗能量的比值大于1。从冲击地压防治角度出发,提出了阻力区临界宽度的概念,建立了以阻力区宽度为指标的应变型冲击地压发生判据。现场实测表明,本文所建立的能量判据和指标与实测结果相吻合。其研究成果可为采动支承压力引起应变型冲击地压的预测预报和防冲、减冲工作的实施提供依据。  相似文献   

6.
通过对唐口煤矿地应力、3上煤层及顶板岩层冲击地压测试结果分析,认为3上煤层属强冲击倾向性煤层,3上煤层顶板属弱冲击倾向性岩层;在采深1000m条件下,随着地应力的增大,煤、岩层的冲击倾向性将会增大。因3上煤层为易碎煤,厚度较大,顶板弹性能易突然全部释放,形成冲击地压;3上煤顶板主要为中砂岩、细砂岩及泥岩,质地坚硬,在煤层开采过程中,煤壁附近出易现高应力集中带,在顶板中聚集的弹性能在自重力和采掘干扰下会突然释放,形成冲击地压。在生产过程中采取钻屑法、沿采煤工作面轨道顺槽安装顶板离层报警系统、合理开拓避免应力集中和叠加、对煤层进行注水,降低煤体弹性和强度、提高支护结构的承载能力等一系列措施,较好地预防了冲击地压的发生。  相似文献   

7.
应用覆岩空间结构学术观点对孤岛顶煤综放采场冲击矿压机制及其控制技术进行研究。根据覆岩关键层的岩性、层位、范围等因素,覆岩关键层空间结构分为覆岩空间大结构和基本顶有限矿压结构。孤岛顶煤采场冲击矿压发生机制:①孤岛顶煤综放采场 ? 型空间大结构形成过程是集中压力逐渐增加的过程,是该时间段发生冲击矿压的力源;②采场基本顶形成最下位 ? 型空间结构后,随着工作面推进,基本顶块体产生滑落失稳,造成工作面冲击矿压现象。通过对分段来压理论、基本顶结构失稳理论和坚硬顶板预断裂理论对覆岩关键层空间结构运动的控制作用研究,提出采用覆岩空间结构理论分析、分阶段降低放煤率、坚硬覆岩预爆泄压技术、覆岩坚硬岩层破裂的微地震监测技术等方式方法预防冲击矿压的发生。  相似文献   

8.
孤岛综放工作面强烈的动压显现使得其发生冲击地压的可能性大大增加,通过运用微地震和电磁辐射综合监测手段分析孤岛综放工作面两次强动压显现事件,获得了工作面煤体发生冲击地压前后能量积聚与释放规律及相应微震和电磁辐射监测数据变化规律,认为工作面煤体发生冲击地压前一般存在一个短暂的能量积聚期,在能量积聚期内微震系统监测到的微震事件的次数和总能量均较少,同时能量积聚期内煤体电磁辐射强度值和脉冲数均持续升高。将工作面微震事件的沉默期以及煤体电磁辐射强度值、脉冲数的持续升高期作为冲击地压的综合前兆信息,并将其转换为量化的预警参数和指标,建立了工作面冲击地压多参数预警方法。现场实践表明,危险识别与灾害预警效果良好。  相似文献   

9.
李杨杨  张士川  高立群  孔德志  孔贺 《岩土力学》2016,37(11):3283-3290
针对阳城煤矿不等长工作面台阶区域发生冲击地压灾害问题,基于工作面特殊布置方式及覆岩赋存特征,采用理论分析、数值模拟和现场实测等方法,分析了台阶区域覆岩结构运动特征和围岩应力演化规律,研究了台阶区域冲击地压诱发机制。研究结果表明:1304工作面台阶区域覆岩经历了“OX-S-C”型较为复杂的结构演变,覆岩空间结构由OX向S型转换时,顶板岩层大面积破断下沉,在台阶区域形成多个悬臂梁结构,越往高位,悬臂梁长度越大;受覆岩运动和采动应力场叠加影响,煤岩体形成高应力集中区,在顶板岩层动载冲击作用下,煤岩体弹性应变能突然释放,诱发冲击地压。采用COMSOL软件对不同卸压钻孔参数下煤体应变能分布特征进行模拟研究,优化了台阶区域卸压钻孔参数。根据模拟结果,随着钻孔孔径、孔深增大及间距减小钻孔卸压效果越明显,考虑工程实际,确定孔径为150 mm、孔深为30 m、间距为1 m为合理有效的卸压钻孔参数,并应用于1302工作面台阶区域的冲击地压防治,取得了较好的防冲效果。  相似文献   

10.
断层作用下深部开采诱发冲击地压相似试验研究   总被引:1,自引:0,他引:1  
以典型断层型冲击地压矿井为例,采用相似材料模拟试验方法,基于覆岩空间结构失稳与断层活化耦合致灾原理,分析了巨型逆冲断层下盘煤层开采采场覆岩运动过程、工作面倾向支承压力及断层面的应力变化规律,研究了巨型逆冲断层影响下巨厚坚硬顶板易冲击煤层冲击地压显现特征。试验结果表明:煤层开采诱发巨型逆冲断层冲击灾变过程分为3阶段:第1阶段,受煤层采动影响,上覆岩层发生空间运动,煤体中形成明显高应力集中区;第2阶段,覆岩多层空间结构演化诱发断层活化,断层活化导致空间结构外部岩体回转,给空间结构施加外部载荷,造成空间结构失稳加剧,煤岩体的应力激增,影响范围扩大;第3阶段,断层滑移释放能量,提供动载荷。根据应力监测数据变化规律,划分了逆冲断层的明显影响区域,研究结果为断层影响下煤层开采的防冲策略与设计提供可靠依据。  相似文献   

11.
This study presents a numerical investigation on the dynamic mechanical state of a coal pillar and the assessment of the coal bump risk during extraction using the longwall mining method. The present research indicates that there is an intact core, even when the peak pillar strength has been exceeded under uniaxial compression. This central portion of the coal pillar plays a significant role in its loading capacity. In this study, the intact core of the coal pillar is defined as an elastic core. Based on the geological conditions of a typical longwall panel from the Tangshan coal mine in the City of Tangshan, China, a numerical fast Lagrangian analysis of continua in three dimensions (FLAC3D) model was created to understand the relationship between the volume of the elastic core in a coal pillar and the vertical stress, which is considered to be an important precursor to the development of a coal bump. The numerical results suggest that, the wider the coal pillar, the greater the volume of the elastic core. Therefore, a coal pillar with large width may form a large elastic core as the panel is mined, and the vertical stress is expected to be greater in magnitude. Because of the high stresses and the associated stored elastic energy, the risk of coal bumps in a coal pillar with large width is greater than for a coal pillar with small width. The results of the model also predict that the peak abutment stress occurs near the intersection between the mining face and the roadways at a distance of 7.5 m from the mining face. It is revealed that the bump-prone zones around the longwall panel are within 7–10 m ahead of the mining face and near the edge of the roadway during panel extraction.  相似文献   

12.
Most coal mines in China use the longwall mining system. High stresses are frequently encountered around development entries at deep mines. This paper presents an alternate longwall mining layout for thick coal seams to minimize ground control problems. In a conventional longwall panel layout, development entries on both ends of the panel are located along the floor, and a coal pillar (chain pillar) is left between adjacent panels to ensure stability. Gateroads on either end of a longwall panel using the layout proposed in this paper are located at different vertical levels within a thick coal seam or in a geologically split coal seam for improved stability. The headgate entry/ies are driven along the floor while the tailgate entry/ies are driven along the roof. Therefore, a longwall face has a gradually elevated or curved section on one end of the panel. For the adjacent panel, the development entry may be located directly below the development entry of the previous panel or may be offset horizontally with respect to it. Based on physical and numerical modeling approaches, it is demonstrated that the stress environment for development entries employing the longwall layout is significantly improved; ground control problems are therefore minimized.  相似文献   

13.
使用CCD相机搭建实验图像数据采集系统,采用花岗岩模拟坚硬顶底板、红砂岩模拟软岩层组合成岩层结构,近似还原顶板来压过程中软岩层的变形破坏过程,研究帮部"弹性核"对冲击地压至灾的影响机制。研究结果表明:(1)上覆顶板来压时,可将软岩层划分为塑性破坏区、弹性承压区、原岩应力区,弹性承压区易形成较大的弹性核。(2)软岩层变形能在弹性承压区大幅度积累,其积累过程是波动式上升的;在峰值荷载前,变形能积累和释放的频率加快;达到峰值荷载时,弹性承压区变形能存在明显的释放过程。(3)冲击地压发生时,塑性破坏区冲击并反作用于临近岩体使其短暂收缩。(4)冲击地压是一个渐进性的过程;一方面,由于水平约束的消失,弹性承压区的受力状态由水平方向受约束的压缩状转入单轴压缩态,导致其承载能力减弱;另一方面,承载区面积快速减小,导致软岩层承压区域承担的竖向荷载突增;两者共同作用导致冲击地压出现渐进性的冲击和破坏。  相似文献   

14.
To master the laws of strong strata behavior of Tashan coal mine under Carboniferous coal mining process, the laws of strong strata behavior in 8107 working face was measured and analyzed. It was shown that the average initial weighting step of 8107 working face was 59.4 m. The average periodic weighting step of main roof was 16.2 m. The maximum working resistance during periodic weighting was 14,711.1 kN. The maximum working resistance during non-periodic weighting was 11,339.9 kN. The average dynamic load factor K during periodic weighting was 1.31. The stress of coal column on the side of the goaf could be divided into four zones (stress stabilization zone, stress slow-increasing zone, significant—increasing stress zone, stress reduction zone) along the strike of 8107 working face. There was a peak of lateral support pressure along the trend of 8107 working face. And the peak position was biased to the side of return airway roadway. With the increase of the distance from the down-side of return airway, the pressure peak of the inner coal body along the strike of 8107 the working face increased and the peak position decreased from the coal wall. The peak stress of coal column tended to be close to the up-side of return airway. And the distance from the down-side of return airway for the peak of inner coal was larger than that for the peak of coal pillar. The peak position of abutment pressure of hard roof was in the range of 10–25 m in front of 8107 working face under full mechanized mining extra thickness coal seam conditions. The relative stress concentration coefficient of k was 1.3–6.5. The range of 10–25 m from the front of the working face to coal wall was stress reduction zone. And the influence range of abutment pressure was about 80 m. It was of great significance to the control and practice of the surrounding rock of the stope for the mining of the hard extra-thick coal seam.  相似文献   

15.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

16.
The state of periodic loading and the interval of periodic roof weighting have an important role in geomechanical stability and, hence, in the continuity of longwall mining operations. In this paper, the mechanism of roof caving in longwall mining—together with the effect of engineering and geomechanical properties of surrounding rock masses on the magnitude and timing of periodic loading—is studied. For this purpose, a longwall mine is first modeled using Phase2 software, and then, by simulating the roof caving process, the periodic roof weighting intervals is calculated. Based on the numerical modeling, the first roof weighting interval and the periodic roof weighting interval are calculated as 27.2 and 12.1 m, respectively. Sensitivity analysis is then applied to determine the effect of changes in the mechanical properties of the rock mass, especially in the main roof and immediate roof. The results of the analysis show that as GSI and quality of the immediate roof increases, the periodic roof weighting interval also increases. Hence, the applied algorithm in this research study can effectively be utilized to calculate the periodic roof weighting interval in the longwall mining method.  相似文献   

17.
The paper discusses the concept and methodologies for the development of longwall face stability index (LFSI). LFSI is used for estimation of chock-shield pressure and face convergence. The index comprises of engineering properties of main roof, depth of mining, different support capacities and mechanical properties of coal seam being mined and provides a numerical value in the range of −6.17 to 8.13. In this study, 324 finite element models of longwall panel are developed based on various combinations of geomining conditions of Indian coal measure strata. The LFSI is an outcome of the results from finite element models. This paper illustrates a real life example for the estimation of chock shield pressure and face convergence based on LFSI. Validation of the LFSI based calculation is carried out with the field monitored data and found that the LFSI based approach is sufficient to forecast face stability parameters at longwall face.  相似文献   

18.
Summary The demand for increased productivity and the problems associated with mining at greater depths have increased the interest in using the yield pillar concept in the United States. This paper summarizes chain pillar behaviour in a mine that historically experienced coal bumps in both room-and-pillar and longwall sections. Results indicate that, generally, the chain pillars yield as designed, but that yielding occurred either after development or with approach of the longwall face. The Bureau of Mines investigated several yield pillar design approaches to possibly explain observed differences in pillar behaviour. These approaches suggest that very localized conditions, such as coal and rock properties, cover depth, and extraction height, may influence the behaviour of any one pillar. At this mine, yielding chain pillars result in de-stressing of the longwall entries and the transfer of potentially dangerous stress concentrations to adjacent panels. Pre-longwall-mining behaviour indicates the existence of a pressure arch, the width of which increases with depth. Results indicate that use of yield pillars improves stress control, reduces bump potential, and increases resource recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号